

Appendix A

Harmonia^{+PL} – procedure for negative impact risk assessment for invasive alien species and potentially invasive alien species in Poland

QUESTIONNAIRE

A0 | Context

a

Questions from this module identify the assessor and the biological, geographical & social context of the assessment.

a01. Name(s) of the assessor(s):

first name and family name

- 1. Andrzej Zalewski
- 2. Marcin Brzeziński external expert
- 3. Henryk Okarma

comm01.	Com	ments:		
		degree	affiliation	assessment date
	(1)	dr hab.	Mammal Research Institute Polish Academy of Sciences, Bialowieża	29-01-2018
	(2)	dr hab.	Faculty of Biology, University of Warsaw	20-01-2018
	(3)	prof. dr hab.	Institute of Nature Conservation, Polish Academy of Sciences in Cracow	29-01-2018

a02. Name(s) of the species under assessment:

Polish name:	Koati
Latin name:	Nasua nasua Linnaeus, 1766
English name:	South American Coati

Unia Europejska Fundusz Spójności

Współfinansowano w ramach projektu nr POIS.02.04.00-00-0100/16 pn. *Opracowanie zasad kontroli i zwalczania inwazyjnych gatunków obcych wraz z przeprowadzeniem pilotażowych działań i edukacją społeczną ze środków Unii Europejskiej w ramach Programu Infrastruktura i Środowisko 2014-2020*

acomm02.	Comments:	
	Polish name (synonym I) ostronos rudy	Polish name (synonym II) –
	Latin name (synonym I) —	Latin name (synonym II) -
	English name (synonym I) Coati	English name (synonym II) Coatimundi

a03. Area under assessment:

Poland

acomm03. Comments:

a04. **Status** of *the species* in Poland. *The species* is:

	native t	o Poland					
	alien, at	en, absent from Poland					
	alien, present in Poland only in cultivation or captivity						
X	X alien, present in Poland in the environment, not established						
	alien, pr	esent in Poland in the enviro	nment, esta	blished			
	-						
acor	nf01.	Answer provided with a	low	medium	high	level of confidence	
					X		
acor	nm04.	Comments:					
		The species does not occu	ır in Poland.	To date. there	have been 3	2 observations of singl	

The species does not occur in Poland. To date, there have been 2 observations of single coati from Poland (Solarz W. unpublished data - N). It is probable that these individuals escaped from the breeding or were deliberately released into the wild.

a05. The impact of *the species* on major domains. *The species* may have an impact on:

- X the environmental domain
- X the cultivated plants domain
- **X** the domesticated animals domain
- **X** the human domain
- **X** the other domains

acomm05. Comme

Comments:

Coati can potentially affect the natural environment both by predation on native species of animals and by competing for resources with other species. The only place where the coati has been found to have a negative impact on the native fauna are the islands of Robinson Crusoe and Juan Fernandez in the Pacific (Gompper and Decker 1998 – P). Coati is a vector of numerous pathogens and parasites, some of which may pose a threat to humans (Herrera et al. 2002, 2008 – P). Coati can destroy both plant crops, feeding in orchards and gardens, as well as fruit and vegetable crops (Perez and Pacheco 2006 – P), which at high densities leads to conflicts with humans. Potentially, it can cause damage to maize and potato crops (Perez and Pacheco 2006 – P). In addition, in places with high tourist traffic, where animals are semi-domesticated, cases of coati aggression have been reported towards people, especially children (Bittner et al. 2010 – P). In anthropogenic environments, coati can cause damage to the infrastructure.

A1 | Introduction

Questions from this module assess the risk for *the species* to overcome geographical barriers and – if applicable – subsequent barriers of captivity or cultivation. This leads to introduction, defined as the entry of *the organism* to within the limits of *the area* and subsequently into the wild.

a06. The probability for *the species* to expand into Poland's natural environments, **as a result of self-propelled expansion** after its earlier introduction outside Polish territory is:

X	low medium high					
acor	nf02.	Answer provided with a	low	medium	high X	level of confidence
acor	nm06.	Comments: The natural range of this s There are no wild population is no possibility of indep introduced to Majorca (Ma	pecies includ ons of this sp pendent exp yol et al. 2009	es South Amer ecies in the co ansion to Eu 9, Valenzuela a	ica (Gomppe untries neigh rope. In Eur nd Alcovar 20	r and Decker 1998 – P). boring to Poland. There ope, this species was D13 – P).).

a07. The probability for *the species* to be introduced into Poland's natural environments by **unintentional human actions** is:

X	low medium high					
acor	1f03.	Answer provided with a	low	medium	high X	level of confidence
acor	nm07.	Comments:				
		Accidental and unintenti possibility of transporting	onal introduction introduction in the species as	ction of this s s a result of unin	species is im ntentional hu	possible. There is no man activities.

a08. The probability for *the species* to be introduced into Poland's natural environments by **intentional human actions** is:

X	low medium high					
acor	if04.	Answer provided with a	low	medium	high X	level of confidence
acon	nm08.	Comments:				
Coati are not bred on farms in Poland and Europe, and the companion animals. Individuals of this species, including the available on an online sale in Europe and in Poland. Theoretica or deliberate release of animals by humans, however, the reproduction of this species in the wild in Poland is minimal. In private breeding may appear in the environment (Solarz W. because they are usually single, they do not form a population Poland: in autumn 2008, 3-4 individuals near Krakow (observed in Warsaw (W. Solarz unpublished data – N). In the United King 2003-2007, single individuals of coati were found at large (release from breeding), however, no cases of reproduction were report Coati have also been introduced in Mallorca, where a small prindividuals has been observed since 2003 (Mayol et al. 2009 – 1).		and they are doing the you neoretically, the ever, the prob- inimal. Individ olarz W. unput oopulation. The observed by M- nited Kingdom arge (released ere reported (E a small popula . 2009 – P). Th	e very rarely raised as ng from breeding, are nere is a risk of escapes bability of survival, or uals that escaped from ablished data – N), but nere were two cases in <i>N</i> . Klejdysz) and in 2014 (Cumbria), in the years by humans or escaped Edgeworth A. 2010 – I). ation (family group and re place of introduction,			

where coati reproduced in the wild and formed quite a large population, are the islands of Robinson Crusoe and Juan Fernandez in the Pacific (Gompper and Decker 1998 – P). Intense trade in these animals can increase the likelihood of escapes or people letting coati. However, the threat of creating a wild population is very small.

A2 | Establishment

Questions from this module assess the likelihood for *the species* to overcome survival and reproduction barriers. This leads to *establishment*, defined as the growth of a population to sufficient levels such that natural extinction within *the area* becomes highly unlikely.

a09. Poland provides a **climate** that is:

X	non-opt sub-opt optimal	timal imal for establishment of <i>the spec</i>	cies			
acon	f05.	Answer provided with a	low	medium	high X	level of confidence
acon	nm09.	Comments: The natural geographical ra South America (Gompper ar survive in the wild in a ten make it impossible to introd	ange of the nd Decker 19 nperate clim luce and set	coati includes 998 – P). It is a t nate zone. Clim tle this species i	the tropical a hermophilic s atic conditior n Poland.	and subtropical zone of species that is unable to ns (especially in winter)

a10. Poland provides habitat that is

Х	non-optimal
	sub-optimal
	optimal for establishment of the species

aconf06.	Answer provided with a	low	medium	high X	level of confidence
acomm10.	Comments: In its natural range, coati in and Borges 2010 – P). Th (Alves-Costa et al. 2004, B born in October-November to survive low temperate November. In Poland, then survive in the wild and repr	nhabits variou e food of the eisiegel and I r (Beisiegel 20 ures, especial e are no appr roduce, especi	s forest enviro ese animals a Mantovani 20 01 – P). Coati, ly young ind opriate condit ially in the win	onments (Goul re primarily fi 06, Hirsch 200 as a thermop ividuals that tions that wou ter half-year.	art et al. 2009, Desbiez ruits and invertebrates D9 – P). The young are hilic species, is not able are born in October- Ild allow this species to

A3 | Spread

Questions from this module assess the risk of *the species* to overcoming dispersal barriers and (new) environmental barriers within Poland. This would lead to spread, in which vacant patches of suitable habitat become increasingly occupied from (an) already-established population(s) within Poland.

Note that spread is considered to be different from range expansions that stem from new introductions (covered by the Introduction module).

a11. The capacity of *the species* to disperse within Poland by natural means, with no human assistance, is:

Х	very low
	low

medium high very hig	h					
aconf07.	Answer provided with a	low	medium	high X	level of confidence	
acomm11.	Comments:					
	Estimation (data type: C) There is no wild popula populations arise, the spre unfavorable climatic cond Majorca (Mayol et al. 2009 not spread to other areas km ² (Haas 2002, Beisiegel	ation in the ead of coati t litions for thi 9, Valenzuela of Europe fro and Mantov	countries neig o the territory o s species. In Eu and Alcover 20 om there. The si ani 2006, Trova	ghboring Po of Poland w urope, the 013 – P). Cu ize of the ar ti et al. 201	bland. However, if such ill not be possible due to coati were introduced in irrently, this species does reas varies from 0.4 to 22 (0 - P), in which case the	

pace of colonization can be relatively high if environmental conditions (especially climatic

a12. The frequency of the dispersal of *the species* within Poland by **human actions** is:

conditions) allow it.

X	low medium high					
acon	f08.	Answer provided with a	low	medium	high X	level of confidence
acom	nm12.	Comments:				
		Bringing to farms in home release of individuals into Transport and the spread of possible, but rather on a sr areas of Poland. A rise in this species appearing in t participation.	s, private zoo the wild are of this species nall scale, wh the number of the environme	is and online of the only ways in Poland with ich poses a sma of imported inc ent and the sp	ommerce, a to introduc the particip all threat of dividuals inc read of the	nd then their escapes or the this species in Poland. Nation of man is therefore penetration into the new preases the probability of species with the human

A4a | Impact on the environmental domain

Questions from this module qualify the consequences of *the species* on wild animals and plants, habitats and ecosystems.

Impacts are linked to the conservation concern of targets. Native species that are of conservation concern refer to keystone species, protected and/or threatened species. See, for example, Red Lists, protected species lists, or Annex II of the 92/43/EWG Directive. Ecosystems that are of conservation concern refer to natural systems that are the habitat of many threatened species. These include natural forests, dry grasslands, natural rock outcrops, sand dunes, heathlands, peat bogs, marshes, rivers & ponds that have natural banks, and estuaries (Annex I of the 92/43/EWG Directive).

Native species population declines are considered at a local scale: limited decline is considered as a (mere) drop in numbers; severe decline is considered as (near) extinction. Similarly, limited ecosystem change is considered as transient and easily reversible; severe change is considered as persistent and hardly reversible.

a13. The effect of the species on native species, through predation, parasitism or herbivory is:

aconf09.	Answer provided with a	low	medium	high	level of confidence
		X			

acomm13. Comments:

The composition of the coati diet is very diverse, however, fruits and invertebrates are the main food ingredients of these animals (Alves-Costa et al. 2004, Hirsch 2009, Aguiar et al. 2011 – P). In Argentina and Brazil, coati ate the fruits of 29 and 53 plant species, respectively (Alves-Costa and Eterovick 2007, Hirsch 2009 – P). In the Iguazu National Park, the coati diet consisted mainly of fruits and invertebrates (Hirsch 2009 – P). Vertebrates are generally a small part of the diet of these predators (Alves-Costa et al. 2004 – P). However, other studies have shown a greater proportion of vertebrates in the coati food. In Southeastern Brazil, the share of vertebrates in the diet was as follows: mammalian remains were found in 41% of faeces, birds in 21%, reptiles in 9% and amphibians in 14% (Ferreira et al. 2013 – P). In this area, the coati also ate a significant amount of anthropogenic food (14%). Although the number of publications on the coati food is small, they indicate high food plasticity of this species and suggest that when introducing coati into a new environment, these animals can guickly adapt to local conditions and by predation they may have a negative impact on native fauna. Because coati are arboreal, they can eat eggs and bird chicks, lowering the breeding success of these animals and affecting the population size. The analysis of diet composition in some areas showed that egg shells were found in 10% of faeces (Ferreira et al. 2013 – P). Since the share of birds' eggs in the predator diet is usually very underestimated (due to the absence of debris from this type of food in the feces), the results indicate that birds' eggs can be eaten by coati in significant quantities. In the case of high population density of this predator, reaching up to 16 individuals per 1 km² (Desbiez et al. 2010 – P), the impact of coati on the breeding success of birds can be very large. This is confirmed by bird studies on the island of Robinson Crusoe (Chile), where coati was introduced. These predators had a negative impact on the population size of several species of birds inhabiting this island (Lever 1995 – P). These observations indicate that coati may significantly affect the number of victims in the introduced areas. In Poland, the appearance of this species may probably cause a drop in the number of birds inhabiting forest environments (from Fringilla coelebs and Turdus merula blackbird to rare species, such as collared flycatcher Ficedula albicollis). It is impossible to assess on which species the coati will exert the greatest pressure.

a14. The effect of *the species* on native species, through competition is:

X	low medium high					
acon	f10.	Answer provided with a	low X	medium	high	level of confidence
acomm14.		Comments: It is difficult to determine t predators as a result of con this species and other pre- possible to rule out the new	the impact of t mpetition. The dators in its r zative effect o	the introductio ere is no data natural range. n pine marten	on of this spe on competiti Due to its ar s <i>Martes ma</i>	ccies on native species of ive interactions between boreal lifestyle, it is not rtes.

a15. The effect of *the species* on native species, through interbreeding is:

X	no / ver	y low				
	low					
	medium	1				
	high					
	very hig	h				
	-			1	1	
acon	f11.	Answer provided with a	low	medium	high	level of confidence
					X	

acomm15. Comments:

There is no risk of hybridization, because coati is not closely related to native species of predatory mammals inhabiting Europe. The natural range of the Procyonidae family is limited to North, Central and South America (Ewer 1998 – P).

a16. The effect of *the species* on native species by hosting pathogens or parasites that are harmful to them is:

very low low medium high X very high	1				
aconf12.	Answer provided with a	low	medium	high X	level of confidence
acomm16.	Comments: Like many predators, coati et al 2003 – P) was found <i>Encephalitozoon</i> and <i>Enter</i> transmitted to other wild cause serious diseases in <i>Trypanosoma cruzi</i> , causin for tuberculosis in cattle (N al. 2008 – P). There were and <i>Uncinaria</i> (Orihel 1964 coati <i>Nasua narica</i> , are rail which can potentially be a 2010 – P), the transfer of t	carry many p l in their natu ocytozoon (La and domestic man, as well g parasitic Ch Aurakami et a also 17 specie , Vieira et al. bies transmiss achieved by co	athogens and ural range. In allo et al. 2012 c animals and as domestic a agas disease, l. 2012 – P) we es of intestina 2008 – P). Coa sion vectors (K oati (16 indivio ens and parasi	parasites. To 40% of coat – P) have bo humans. So and farm ani and <i>Myobac</i> ere also foun l parasites, in ti, as well as freb et al. 20 duals per 1 l tes can pose	bxoplasma gondii (Thoisy i, protozoa of the genus een reported that can be me of these species can mals (e.g. dogs or pigs). <i>terium bovis</i> responsible d in the coati (Herrera et ncluding <i>Toxocara, Tenia</i> the related white-nosed 03 – P). At high density, km ² , Desbiez and Borges

a17. The effect of *the species* on ecosystem integrity, by affecting its abiotic properties is:

X low medium high	n				
aconf13.	Answer provided with a	low	medium	high X	level of confidence
acomm17.	Comments: The species does not affect	abiotic facto	ors.		

a18. The effect of *the species* on ecosystem integrity, by affecting its biotic properties is:

X	low mediun high	n				
aco	nf14.	Answer provided with a	low	medium X	high	level of confidence
aco	mm18.	Comments:				
		Under optimal conditions, Desbiez and Borges 2010 – parasitic infections, especi plants found in the excre infection may cause a dec to support such assumption forest ecosystems, influent	Coati can oce P). In this sit ially in roder ment of the rease in the ons. In Polan cing changes	cur in high dens tuation, densely its and small bi se predators. A number of these d, the introduct in the species c	ities (up to arranged la ird species, An increase e species. H tion of coat composition	16 individuals per 1 km ² , atrines can be a source of feeding on the seeds of in the level of parasitic lowever, there is no data i could cause changes in of the bird complex and

through the trophic cascade affect other groups of organisms, e.g. insects. However, it is difficult to predict the directions of these changes.

A4b | Impact on the cultivated plants domain

Questions from this module qualify the consequences of *the species* for cultivated plants (e.g. crops, pastures, horticultural stock).

For the questions from this module, consequence is considered 'low' when presence of *the species* in (or on) a population of target plants is sporadic and/or causes little damage. Harm is considered 'medium' when *the organism's* development causes local yield (or plant) losses below 20%, and 'high' when losses range >20%.

a19. The effect of *the species* on cultivated plant targets through **herbivory or parasitism** is:

X	inapplic very low low medium high very hig	able / h				
acor	nf15.	Answer provided with a	low	medium	high X	level of confidence
acor	nm19.	Comments:				
Because a large part of the coati diet are plants, they can cause losses in plant crop fruit harvest. In the natural range (in Bolivia), the coati caused losses mainly in the co yucca harvest, where this species was present in up to 80% of the fields (Perez and Pa 2006 – P). However, it is not described how large losses were caused by coati. The a noticed that losses caused by other species of mammals are smaller on fenced field fences did not limit the negative impact of coati. Coati also cause losses in crops						osses in plant crops and s mainly in the corn and elds (Perez and Pacheco ed by coati. The authors er on fenced fields, but e losses in crops inside

a20. The effect of *the species* on cultivated plant targets through **competition** is:

home gardens (Hass 2002 - P).

X	inapplic very lov low medium high very hig	able v h				
acor	nf16.	Answer provided with a	low	medium	high	level of confidence
acor	mm20.	Comments:				

The species is an animal, so it has no ability to compete with plants.

a21. The effect of *the species* on cultivated plant targets through **interbreeding** with related species, including the plants themselves is:

Х	inapplicable
	no / very low
	low
	medium
	high
	very high

aconf17.	Answer provided with a	low	medium	high	level of confidence
acomm21.	Comments:				

The species is an animal, so it has no ability to cross with plants.

a22. The effect of the species on cultivated plant targets by affecting the cultivation system's integrity is:

X	very low low medium high very hig	r h				
acor	nf18.	Answer provided with a	low	medium X	high	level of confidence
acor	nm22.	Comments: So far, there is no informati integrity.	ion on the ir	npact of coati o	n crop culti	vation by disturbing their

a23. The effect of *the species* on cultivated plant targets by hosting **pathogens or parasites** that are harmful to them is:

X	very low					
	low					
	medium					
	high					
	very hig	า				
acor	nf19.	Answer provided with a	low	medium	high	level of confidence
					Х	
acor	nm23.	Comments:				
		There is no information pathogens and parasites h	on the impa armful to the	ct of coati on se plants.	plant crops	s as a host or vector of

A4c | Impact on the domesticated animals domain

Questions from this module qualify the consequences of *the organism* on domesticated animals (e.g. production animals, companion animals). It deals with both the well-being of individual animals and the productivity of animal populations.

a24. The effect of the species on individual animal health or animal production, through predation or parasitism is:

	inapplica	able									
Х	very low	,									
	low										
	medium	dium									
	high										
	very hig	h									
acon	f20.	Answer provided with a	low	medium	high	level of confidence					
				X							
acomm24.		Comments:									
		There is no data on the imperies of the the the the spected that this species of the species of	pact of coat an cause los	i on animal proo ses on poultry fa	duction thro arms.	ough predation. It can be					

a25. The effect of *the species* on individual animal health or animal production, by having properties that are hazardous upon **contact**, is:

	very low
Х	low
	medium
	high
	very high

aconf21.	Answer provided with a	low	medium X	high	level of confidence
----------	------------------------	-----	--------------------	------	---------------------

Under threat, coati can be aggressive towards dogs or cats, with the consequent bites, but no publications about such behaviors have been found.

diseases in domestic and farm animals (e.g. dogs or pigs). Coati is also a vector of rabies transmission (Kreb et al. 2003 - P), which is subject to the notification obligation based on

a26. The effect of *the species* on individual animal health or animal production, by hosting **pathogens or parasites** that are harmful to them, is:

X	inapplica very low low medium high very high	n				
aconf	22.	Answer provided with a	low	medium	high X	level of confidence
acom	m26.	Comments:				
		Coati are a vector of tran reducing animal product toxoplasmosis (de Thoisy et tuberculosis in cattle (Mut <i>Encephalitozoon</i> and <i>Enter</i> transmitted to other specie	sferring many tion. Coati et al. 2003 – F rakami et al. rocytozoon (La es of domesti	 pathogens ca transfer Toxa and Myobac 2012 – P). In a allo et al. 2012 c animals. Som 	ausing disea: pplasma go terium bovis 40% of coati 2 – P) have ne of these s	ses in farm animals and ndii protozoa, causing bacteria responsible for i, protozoa of the genus been found that can be pecies can cause serious

A4d | Impact on the human domain

Questions from this module qualify the consequences of *the organism* on humans. It deals with human health, being defined as a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity (definition adopted from the World Health Organization).

a27. The effect of *the species* on human health through **parasitism** is:

veterinary regulations (OIE list).

X	inapplic	able /				
	low medium high vert higl	n				
acor	nf23.	Answer provided with a	low	medium	high	level of confidence

acomm27. Comments:

The species is not a parasite.

a28. The effect of *the species* on human health, by having properties that are hazardous upon **contact**, is:

X	very low low medium bigb					
	very high	ı				
acor	ıf24.	Answer provided with a	low	medium	high X	level of confidence
acor	nm28.	Comments:				
		Coati may be aggressive a to human presence, they	nd may bite (use leftover	Bittner et al. 20 s left in garbag)10 – P). Es ge cans or	pecially when they adapt on tables in restaurants

a29. The effect of *the species* on human health, by hosting **pathogens or parasites** that are harmful to humans, is:

(M. Brzeziński – own observation – A), then they become aggressive towards people.

	inapplica very low	able				
	low medium					
X	very hig	h				
aco	nf25.	Answer provided with a	low	medium	high X	level of confidence
aco	mm29.	Comments:				
		Coati can transmit danger difficile (Silva et al. 2014 – genus Encephalitozoon a microsporidiosis in human responsible for leishmania parasitic Chagas disease in also a rabies vector (Kreb d	ous pathoger P) causing, an nd <i>Enterocyto</i> is or flagellate sis. In the coa n humans (He et al. 2003 – P	ns to humans. nong others, er ozoon (Lallo e e of the genus ti, <i>Trypanosom</i> rrera et al. 20 ?), a disease wh	For example nteritis in hun et al. 2012 - <i>Leishmania</i> (<i>na cruzi</i> was a 08, Rocha et nich is deadly	, they carry <i>Clostridium</i> nans, protozoa from the - P), which can cause Lainson et al. 1989 – P) Ilso found, which causes al. 2013 – P). Coati are for humans and subject

A4e | Impact on other domains

Questions from this module qualify the consequences of *the species* on targets not considered in modules A4a-d.

a30. The effect of the species on causing damage to infrastructure is:

to reporting (OIE list).

Х	very low
	low
	medium
	high
	very high

aconf26.

				-
Answer provided with a	low	medium X	high	level of confidence

acomm30. Comments:

In some places of their natural range coati feed near human settlements (M. Brzeziński – own observation – A), where they can scatter litter, destroy crops in home gardens or greenhouses (Sazima 2010 - P). In some places, near restaurants, they beg for food.

A5a | Impact on ecosystem services

Questions from this module qualify the consequences of *the organism* on ecosystem services. Ecosystem services are classified according to the Common International Classification of Ecosystem Services, which also includes many examples (CICES Version 4.3). Note that the answers to these questions are not used in the calculation of the overall risk score (which deals with ecosystems in a different way), but can be considered when decisions are made about management of *the species*.

a31. The effect of *the species* on **provisioning services** is:

X moo N neu moo sign	ificantly ne lerately ne tral lerately po ificantly po	gative gative sitive sitive				
aconf27.	Answ	er provided with a	low	medium	high X	level of confidence
acomm31	Comn Coati	nents: may have a negativ	ve impact on	services relate	ed to provi	ding food by feeding

Coati may have a negative impact on services related to providing food by feeding in orchards and gardens, which may negatively affect the production of fruits and vegetables. The transmission of diseases and parasites by this species to livestock may in turn have a negative effect on animal production. However, it is difficult to assess this impact and its potential scale.

a32. The effect of the species on regulation and maintenance services is:

rabies, which it is a carrier of.

X me X me me me sign sign	gnifica oderat eutral oderat gnifica	ntly negative tely negative tely positive ntly positive				
aconf28	8.	Answer provided with a	low	medium	high X	level of confidence
acomm	32.	Comments: The presence of coati in ec	osystems ma	ay result in high	er prevalen	ce of zoonoses, including

a33. The effect of the species on cultural services is:

X	significa moderat neutral moderat significa	ntly negative tely negative tely positive ntly positive				
aco	nf29.	Answer provided with a	low	medium	high X	level of confidence

acomm33.

Comments:

In some places, coati may feed in urbanized areas, constituting a nuisance element e.g. in restaurants serving meals outside the building. Individuals of this species can also spread waste, seeking food in garbage containers.

<u>A5b</u> | Effect of climate change on the risk assessment of the negative impact of the species

Below, each of the Harmonia^{+PL} modules is revisited under the premise of the future climate. The proposed time horizon is the mid-21st century. We suggest taking into account the reports of the Intergovernmental Panel on Climate Change. Specifically, the expected changes in atmospheric variables listed in its 2013 report on the physical science basis may be used for this purpose. The global temperature is expected to rise by 1 to 2°C by 2046-2065.

Note that the answers to these questions are not used in the calculation of the overall risk score, but can be but can be considered when decisions are made about management of *the species*.

a34. INTRODUCTION – Due to climate change, the probability for *the species* to overcome geographical barriers and – if applicable – subsequent barriers of captivity or cultivation in Poland will:

X	decreas decreas not chai increase increase	e significantly e moderately nge e moderately e significantly				
aconf30.		Answer provided with a	low	medium	high X	level of confidence
acor	nm34.	Comments:				

Climate warming will not have an effect on overcoming of geographical barriers. The climate changes predicted based on the current models will still not allow for the introduction of this species to Poland, the temperature would have to increase significantly, which is very unlikely.

a35. ESTABLISHMENT – Due to climate change, the probability for *the species* to overcome barriers that have prevented its survival and reproduction in Poland will:

aconf31.	Answer provided with a	low	medium	high X	level of confidence
----------	------------------------	-----	--------	-----------	---------------------

acomm35. Comments:

Significant global warming may cause the coati to create a wild population and reproduce in Poland. However, average temperatures, especially in winter, would have to increase significantly, and such a scenario of global warming is still unlikely

a36. SPREAD – Due to climate change, the probability for *the species* to overcome barriers that have prevented its spread in Poland will:

increase increase	moderately significantly				
aconf32.	Answer provided with a	low	medium	high X	level of confidence
acomm36.	Comments:				
	Scenarios of global warmin	ıg do not assı	ume that tempe	ratures will	rise to such an ex

to enable the spread of this species in Poland.

a37. IMPACT ON THE ENVIRONMENTAL DOMAIN – Due to climate change, the consequences of *the species* on wild animals and plants, habitats and ecosystems in Poland will:

X	decrease decrease not chai increase increase	e significantly e moderately nge e moderately e significantly				
acor	nf33.	Answer provided with a	low	medium X	high	level of confidence
acor	mm37.	Comments:				
		It is difficult to assess whet environment. Especially that	her global w at the proba	varming can char ability of creating	nge the imp g a wild po	act of this species on the oulation in Poland is very

a38. IMPACT ON THE CULTIVATED PLANTS DOMAIN – Due to climate change, the consequences of *the species* on cultivated plants and plant domain in Poland will:

X	decreas decreas not chan increase increase	e significantly e moderately nge e moderately e significantly				
aconf34.		Answer provided with a	low	medium X	high	level of confidence

acomm38. Comments:

small.

The climate change will not increase the impact of this species on crops.

a39. IMPACT ON THE DOMESTICATED ANIMALS DOMAIN – Due to climate change, the consequences of *the species* on domesticated animals and animal production in Poland will:

	d d X n ir ir	lecrease lecrease lot char ncrease ncrease	e significantly e moderately nge moderately significantly				
а	aconf35.		Answer provided with a	low	medium X	high	level of confidence
acomm39.		n39.	Comments: The potential impact of co climate change.	oati on anim	al husbandry is	small and	is not dependent on the

a40. IMPACT ON THE HUMAN DOMAIN – Due to climate change, the consequences of *the species* on human in Poland will:

X	decrease significantly decrease moderately t not change increase moderately increase significantly						
aconf36.		Answer provided with a	low	medium X	high	level of confidence	
acom	m40.	Comments: The potential impact of coa	ati on other p	eople is not dep	endent on	the climate change.	

a41. IMPACT ON OTHER DOMAINS – Due to climate change, the consequences of *the species* on other domains in Poland will:

X	decrease significantly decrease moderately not change increase moderately increase significantly					
aconf37.		Answer provided with a	low	medium X	high	level of confidence
acomm41.		Comments: The potential impact of coa	ati on other o	bjects is not dep	pendent on	the climate change.

<u>Summary</u>

Module	Score	Confidence	
Introduction (questions: a06-a08)	0.17	1.00	
Establishment (questions: a09-a10)	0.00	1.00	
Spread (questions: a11-a12)	0.00	1.00	
Environmental impact (questions: a13-a18)	0.42	0.58	
Cultivated plants impact (questions: a19-a23)	0.17	0.83	
Domesticated animals impact (questions: a24-a26)	0.42	0.67	
Human impact (questions: a27-a29)	0.63	1.00	
Other impact (questions: a30)	0.00	0.50	
Invasion (questions: a06-a12)	0.06	1.00	
Impact (questions: a13-a30)	0.63	0.72	
Overall risk score	0.03		
Category of invasiveness	moderately invasive alien species		

A6 | Comments

This assessment is based on information available at the time of its completion. It has to be taken into account, however, that biological invasions are, by definition, very dynamic and unpredictable. This unpredictability includes assessing the consequences of introductions of new alien species and detecting their negative impact. As a result, the assessment of the species may change in time. For this reason it is recommended that it is regularly repeated.

acomm42. Comments:

Although the calculated value of the negative effect of coati (0.63) classifies it as the medium invasive alien species, the total score (0.03) indicates the lack of real threat from this species in Poland. Such an assessment results from the very low likelihood of introducing, settling in and spreading of the coati in Poland (the total score for the invasion process is only 0.06).

Data sources

1. Published results of scientific research (P)

Aguiar LM, Moro-Rios RF, Silvestre T, Silva-Pereira JE, Bilski DR, Passos FC, Sekiama ML, Rocha VJ. 2011. Diet of brown-nosed coatis and crab-eating raccoons from a mosaic landscape with exotic plantations in southern Brazil. Studies on Neotropical Fauna and Environment 46: 153-161

Alves-Costa CP, Eterovick PC. 2007. Seed dispersal services by coatis (*Nasua nasua*, Procyonidae) and their redundancy with other frugivores in southeastern Brazil. Acta Oecologica 32: 77-92

Alves-Costa CP, Fonseca GAB, Christófaro C. 2004. Variation in the diet of the brown-nosed coati (*Nasua nasua*) in southeastern Brazil. Journal of Mammalogy 85: 478-482

Beisiegel BM. 2001. Notes on the coati, *Nasua nasua* (Carnivora: Procyonidae) in an Atlantic forest area. Brazilian Journal of Biology 61: 689-692

Beisiegel BM, Mantovani W. 2006. Habitat use, home range and foraging preferences of the coati *Nasua nasua* in a pluvial tropical Atlantic forest area. Journal of Zoology 269: 77-87

Bittner GC, Hans NR, Neto GH, Morais MO, Filho GH, Haddad V Jr. 2010. Coati (*Nasua nasua*) attacks on humans: case report. Wilderness & Environmental Medicine 21: 349 -352

de Thoisy B, Demar M, Aznar C, Carme B. 2003. Ecologic correlates of *Toxoplasma gondii* exposure in freeranging neotropical mammals. Journal of Wildlife Diseases 39: 456-459

Desbiez ALJ, Borges PAL. 2010. Density, habitat selection and observations of South American Coati *Nasua nasua* in the central region of the Brazilian Pantanal wetland. Small Carnivore Conservation 42: 14-18

Ewer RF. 1998. The carnivores. Cornell University Press, Ithaca, New York

Ferreira GA, Nakano-Oliveira E, Genaro G, Acerda-Chavez AK. 2013. Diet of the coati *Nasua nasua* (Carnivora: Procyonidae) in an area of woodland inserted in an urban environment in Brazil. Revista Chilena de Historia Natural 86: 95-102

Gompper ME, Decker DM. 1998. Nasua nasua. Mammlian Species 580: 1-9

Goulart FV, Cáceres NC, Graipel ME, Tortato MA, Ghizoni Jr IR, Oliveira-Santos LG. 2009. Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mammalian Biology 74: 182-190

Hass CC. 2002. Home-range dynamics of white-nosed coatis in southeastern Arizona. Journal of Mammalogy 83: 934-946

Herrera HM, Alessi AC, Marques LC, Santana AE, Aquino LPCT, Menezes RF, Moraes MAV, Machado RZ. 2002. Experimental *Trypanosoma evansi* infection in South American coati (*Nasua nasua*): hematological, biochemical and histopathological changes. Acta Tropica 81: 203-210

Herrera HM, Lisboa CV, Pinho AP, Olifiers N, Bianchi RC, Rocha FL, Mourao GM, Jansen AM 2008. The coati (*Nasua nasua*, Carnivora, Procyonidae) as a reservoir host for the main lineages of Trypanosoma cruzi in the Pantanal region, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 102: 1133-1139

Hirsch BT. 2009. Seasonal variation in the diet of ring-tailed coatis (*Nasua nasua*) in Iguazu, Argentina. Journal of Mammalogy 90: 136-143

Krebs JW, Williams SM, Smith JS, Rupprecht CE, Childs JE. 2003. Rabies among infrequently reported mammalian carnivores in the United States, 1960-2000. Journal of Wildlife Diseases 39: 253-261

Lainson R, Braga RR, De Souza AAA, Pôvoa MM, Ishikawa EAY, Silveira FT. 1989. *Leishmania (Viannia) Shawi* sp. n., a parasite of monkeys, sloths and procyonids in amazonian Brazil. Annales de Parasitologie Humaine et Comparée 64: 200-207

Lallo MA, Calábria P, Bondan EF, Milanelo L. 2012 Identification of *Encephalitozoon* and *Enterocytozoon* (microsporidia) spores in stool and urine samples obtained from free-living South American Coatis (*Nasua nasua*). Applied and Environmental Microbiology 78: 4490-4492

Lever C. 1985. Naturalized mammals of the world. Longman

Mayol J, Álvarez C, Manzano X. 2009. Presence and control of the coati, *Nasua nasua*, and other carnivores introduced in recent times in Mallorca. Bolletí de la Societat d'Historia Natural de les Balears 52: 183-191

Murakami PS, Monego F, Ho JL, Gibson A, de Castro Vilani RG, Soresini GC, Brockelt SR, Biesdorf SM, Fuverki RB, Nakatani SM, Riediger IN. 2012. An outbreak of tuberculosis by *Mycobacterium bovis* in coatis (*Nasua nasua*). Journal of Zoo and Wildlife Medicine 43: 338-341

Orihel TC. 1964. *Brugia guyanensis* sp. n.(Nematoda: Filarioidea) from the coatimundi (*Nasua nasua vittata*) in British Guiana. The Journal of Parasitology 1: 115-118

Pérez E, Pacheco LF. 2006. Damage by large mammals to subsistence crops within a protected area in a montane forest of Bolivia. Crop Protection 25: 933-939

Rocha FL, Roque AL, de Lima JS, Cheida CC, Lemos FG, de Azevedo FC, Arrais RC, Bilac D, Herrera HM, Mourao G, Jansen AM. 2013. *Trypanosoma cruzi* infection in neotropical wild carnivores (Mammalia: Carnivora): at the top of the *T. cruzi* transmission chain. Plos One 8(7): e67463

Sazima I. 2010. What coatis and mongooses have in common? Biota Neotropica 10: 457-461

Silva RO, de Almeida LR, Junior CA, de Magalhães Soares DF, Pereira PL, Rupnik M, Lobato FC. 2014. Carriage of *Clostridium difficile* in free-living South American coati (*Nasua nasua*) in Brazil. Anaerobe 30: 99-101

Trovati RG, de Brito BA, Duarte JMB. 2010. Habitat use and home range of brown-nosed coati, *Nasua nasua* (Carnivora: Procyonidae) in the Brazilian Cerrado biome. Revista de Biología Tropical 58: 1069-1077

Valenzuela A, Alcover JA. 2013. Radiocarbon evidence for a prehistoric deliberate translocation: the weasel (*Mustela nivalis*) of Mallorca. Biological Invasions 15: 717-722

Vieira FM, Luque JL, Muniz-Pereira LC. 2008. Checklist of helminth parasites in wild carnivore mammals from Brazil. Zootaxa 1721: 1-23

2. Databases (B)

-

3. Unpublished data (N)

Solarz W. – unpublished data on coati observations in Poland

4. Other (I)

Edgeworth A. 2010. Coati numbers on the increase in Cumbria. The Westmorland Gazette 30 th June 2010

5. Author's own data (A)

Brzeziński M. - own observations od coati behaviour