4. BADANIA GAMMA-SPEKTROMETRYCZNE WRAZ Z INTERPRETACJĄ GEOFIZYCZNĄ I GEOLOGICZNĄ

4.1 Metodyka

Badania gamma-spektrometryczne na obszarze Sudetów mają już długą historię, która związana jest z poszukiwaniem złóż (Solecki i in., 2011). Przykładem tego rodzaju prac są badania prowadzone w latach 70-tych XX w. w rejonie Markocic i Opolna Zdroju, które na celu miały określenie perspektyw geologicznych występowania złóż toru i pierwiastków ziem rzadkich, związanych ze strefami anomalii naturalnego promieniowania gamma (Cieśla i in., 1979). Podsumowanie wyników badań gamma-spektrometrycznych wykonanych przez Przedsiębiorstwo Badań Geofizycznych, w latach 80-tych XX w. oraz główne wnioski zawarte zostały w wynikach raportu autorstwa J. Farbisza i S. Mżyka, włączonego do opracowania tematu "Kompleksowa, geologiczno-geofizyczna interpretacja zdjęcia magnetycznego T Sudetów i ich przedpola (Ihnatowicz i in., 2016). W raporcie tym stwierdzono, że "powszechnie znaną prawidłowością jest wyraźnie obniżony poziom promieniotwórczości (zawartości pierwiastków promieniotwórczych potasu (K^{40}) toru i uranu nad skałami zasadowymi. Szczegółowe badania gamma spektrometryczne wykonane w latach ubiegłych w kilku rejonach Sudetów (m in. w rejonie Nowej Rudy-Wambierzyc, Miedzianki, Opolna Zdroju) wykazały, że metoda ta bardzo precyzyjnie kartuje zasięgi skał o zróżnicowanej zasadowości. (...) Metodę gamma-spektrometryczną stosowano również jako wskaźnik mineralizacji hydrotermalnej. Strefy tego typu cechują się podwyższoną zawartością uranu i inwersją w stosunku do koncentracji toru (stosunek U/Th>1)."

W 1994 roku opublikowane zostały mapy zawartości toru (eTh), uranu (eU) i potasu (⁴⁰K) oraz całkowitej mocy dawki promieniowania gamma na obszarze Polski (Strzelecki i in., 1994). Mapy te jednoznacznie wskazują na podwyższone wartości wszystkich czterech parametrów na obszarze Sudetów. Wyniki te potwierdzone zostały w "Atlasie radiologicznym Polski" (Jagielak i in., 1998; Isajenko i in., 2012). Prace spektrometryczne prowadzone były również m.in. na Uniwersytecie Wrocławskim (m.in. Solecki i in., 2007; Muszer i in., 2015) czy Śląskim (Dziurowicz i in., 2017; Dżaluk i in., 2015; Malczewski, Żaba, 2017) i są zgromadzone w materiałach archiwalnych uniwersytetu oraz licznych publikacjach. Szczegóły metodyczne dotyczące pomiarów gamma-spektrometrycznych znaleźć można m.in. w wytycznych IAEA (2003) jak również w podręczniku Gilmore'a (2008).

Metodą radiometryczną stosowaną w celu wykrywania aktywnych uskoków są przede wszystkim pomiary obecności radonu ²²²Rn w powietrzu glebowym (Kemski i in., 1992; Swakoń i in., 2005). Podwyższone wartości natężenia promieniowania mogą być wskaźnikiem obecności strefy uskokowej, strefy "zluźnień/spękań" o wysokich parametrach przepuszczalności, co pośrednio pozwolić może na wnioskowanie o obecności stref podejrzanych o występowanie emanacji radonowych (znaczące wahania eU wynikać mogą z migracji ²²²Rn). Należy mieć na uwadze, że podwyższone wartości mogą wynikać również z czynników takich jak bliskość skał podłoża, przeprowadzenie pomiarów w strefie obsypisk na zboczach czy bliskość zabudowy. Swakoń i in., (2005) stwierdzili znaczącą zmianę koncentracji ²²²Rn w bezpośrednim sąsiedztwie stref uskokowych, wykonując pomiary wzdłuż linii prostopadłych do tychże stref. Zmienności koncentracji izotopów ⁴⁰K, ²²⁶Ra i ²³²Th wzdłuż badanego profilu były przy tym stosunkowo niewielkie, ale w dużym stopniu zgodne między sobą.

Inne podejście zastosował Šálek i in. (2014) wykonując szczegółowe pomiary gammaspektrometryczne na krótkim 6-metrowym profilu przecinającym prostopadle Sudecki Uskok Brzeżny (SUB). Niewielki krok pomiarowy (10cm) pozwolił na wykartowanie wyraźnie podwyższonej zawartości eTh w strefie brekcji tektonicznej, podczas gdy wartości K i eU nie wykazały znaczących zmian.

Próbę korelacji potencjalnych emanacji radonowych z pomiarami dawki naturalnego promieniowania gamma podjęli m.in. Szegvary i in. (2007). Autorzy zauważyli liniową zależność, przy czym różne czynniki, tj. wilgotność gleby, skład mineralny czy zmiany ciśnienia w różny sposób wpływały na oba rodzaje pomiarów.

W ramach I etapu przedsięwzięcia "Młode strefy tektoniczne a warunki geotermalne w Sudetach w świetle badań geochronologicznych, strukturalnych i termometrycznych (Raport końcowy – Młode strefy tektoniczne – etap I, 2018) pomiary gamma-spektrometrii wykonane zostały wzdłuż 17 profili ze średnim krokiem pomiarowym 50m i czasem rejestracji 5 min. Dodatkowo wykonano zdjęcie powierzchniowe w regularnej siatce 100x100m, na powierzchni ok. 5,5 km². Pomiary wykonywano bezpośrednio na ziemi. Interpretacja wyników pomiarów oraz wskazówki koreferenta raportu doprowadziły do dość znaczącej korekty metody prowadzenia pomiarów w II etapie. Krok pomiarowy wzdłuż profilu skrócono do 10 metrów, a czas pomiaru wydłużono do 10 minut. Część pomiarów wykonana została nadal bezpośrednio na powierzchni gruntu (profile Spalona), ale następne (po zapoznaniu się z opinią koreferenta) wykonano z wysokości ok. 1 m (aparatura podwieszana była pod statywem geodezyjnym).

W ramach II etapu przedsięwzięcia pomiary radiometryczne wykonane zostały wzdłuż 22 profili o łącznej długości ok. 7 km (Tab.4. 2). Grupa profili, opisana w dalszej części opracowania pod wspólna nazwa Spalona (profile Spalona I – X), została wytyczona na podstawie analizy zdjęcia LIDAR i miała charakter eksperymentalny. Głównym założeniem było w tym wypadku wytypowanie lineamentów morfologicznych znajdujących się w obrębie jednego wydzielenia litologicznego. Celem było wykonanie pomiarów gammaspektrometrycznych wzdłuż kilku równoległych do siebie profili, przecinających ten sam lineament. Badania te miały pokazać czy ew. anomalie poziomu radiacji uranowej kontynuują się wzdłuż danego lineamentu przy eliminacji potencjalnego wpływu zmiany litologii w poprzek lineamentu. Idea taka została wysunieta we wnioskach z realizacji I etapu przedsięwzięcia (Raport końcowy - Młode strefy tektoniczne - etap I, 2018). Ilość wykonanych metodą gamma-spektrometryczną profili badawczych przekroczyła ilość (15-20) zakładaną w Umowie, ponieważ na obiekcie Spalona ponad łącznie trzema lineamentami morfologicznymi. - zamiast standardowych trzech pojedynczych profili -wykonano łącznie aż 10 eksperymentalnych profili (po 3 lub 4 na jednym lineamencie), co wynikało z założeń eksperymentu. Jednocześnie należy zaznaczyć, że ogólnie badaniami objęto w ten sposób łącznie 15 lineamentów (tj. stref tektonicznych), która to liczba odpowiada dolnej wartości przedziału z Umowy (wyrażonej tu ilością lineamentów, ekwiwalentną ilości profili). Idea taka została wysunięta we wnioskach z realizacji I etapu przedsięwzięcia (Raport końcowy -Młode strefy tektoniczne – etap I, 2018).

Pozostałe profile wyznaczone zostały na podstawie wyników interpretacji badań sejsmicznych (patrz: rozdz. 2) bądź magnetotellurycznych (patrz: rozdz. 3). Jeżeli wynikiem przeprowadzonych badań geofizycznych było wyznaczenie przypuszczalnej strefy uskokowej, to na odcinku ponad taką strefą planowano wykonanie badań gamma-spektrometrycznych. W przeciwnym wypadku (dotyczy czterech profili: Jelcz, Ożary, Radoszowice, Wilamowice Nyskie) z badań gamma-spektrometrycznych zrezygnowano. Podobnie zrezygnowano z realizacji badań na profilu Goworów, gdzie wstępne wyniki interpretacji danych sejsmicznych były mało obiecujące. Natomiast w końcowej fazie interpretacji zdecydowano się jednak na wyznaczenie tam strefy uskokowej.

Na profilu Wojcieszyce co prawda wyznaczona została strefa uskokowa, ale jej lokalizacja okazała się szczególnie nieodpowiednia dla przeprowadzenia badań gammaspektrometrycznych. Ponad strefą uskokową przechodzi bowiem jezdnia wraz z jej

96

podbudową. Stąd także w tym przypadku zrezygnowano z realizacji badań gammaspektrometrycznych.

Pomimo dołożonych starań, nie zawsze możliwe było zapewnienie np. odpowiedniej geometrii pomiarów. Przy wykonywaniu pomiarów gamma-spektrometrycznych, odczyt pochodzi z obszaru równego 2π (kąt bryłowy). Geometria pomiaru $>2\pi$ wystąpi gdy urządzenie umieszczone będzie w depresji, co skutkować będzie sztucznym zawyżeniem wyniku pomiaru (przewartościowaniem). Umieszczenie urządzenia na wzniesieniu lub krawędzi spowoduje natomiast zaniżenie wyników (niedowartościowanie). Profil sejsmiczny Lądek Zdrój został poprowadzony po terenie, którego amplituda wysokości sięga 100m (dolina potoku i otaczające je wzgórza). Dodatkowo wstępne wyniki interpretacji wskazywały na brak strefy uskokowej (którą jednak później wyznaczono we wschodniej części profilu - rozdz. 2, Lądek Zdrój). Obie składowe złożyły się na rezygnację z przeprowadzenia na profilu Lądek Zdrój badań gamma-spektrometrycznych.

Współrzędne punktów pomiarowych wyznaczane były za pomocą urządzenia GPS. Do pomiarów gamma-spektrometrycznych wykorzystano dwa spektrometry: 1) Gamma Surveyor II – GSII/1 (firma GF Instruments) wyposażony w scyntylacyjny detektor z kryształem tlenku bizmutu Bi₄Ge₃O₁₂ o objętości 20 cm³ oraz 2) RS-230 BGO o detektorze z kryształem o objętości 103 cm³. Oba spektrometry umożliwiają pomiar mocy dawki (pochłoniętej) naturalnego promieniowania gamma (nGy/h) oraz określenie stężenia izotopu potasu ⁴⁰K (%) oraz zawartości równoważne izotopu uranu eU i toru eTh (ppm). Zawartość równoważna eU oznacza zawartość uranu ²³⁸U obliczaną przy założeniu stanu równowagi pomiędzy izotopami szeregu promieniotwórczego uranu na podstawie analizy kwantów gamma emitowanych przez bizmut ²¹⁴Bi. Zawartość równoważna eTh obliczana jest na podstawie analizy kwantów emitowanych przez ²⁰⁸Tl, również przy założeniu stanu równowagi w szeregu torowym (Solecki, 2013). Stężenia te zostały przeliczone na stężenia aktywności izotopów promieniotwórczych oraz moc dawki wg. relacji zawartych w Tab.4. 1.

Stężenie	Stężenie aktywności	Moc dawki	
	(Bq/kg)	(nGy/h)	
1 %K	313,00	13,078	
1 ppm U	12,35	5,675	

4.06

2.494

1 ppm Th

Tab.4. 1 Zależności pomiędzy stężeniami K, U, Th, stężeniami aktywności związanych z nimi izotopów promieniotwórczych oraz mocą dawki (Solecki, 2013; IAEA, 1989)

	Nazwa profilu	Wsp. środka profilu (ukł. 1992)		Długość ¹	Liczba punktów
		X [m]	Y [m]	[m]	pomiarowych
1	Brzozowie	287811,52	303590,66	305	32
2	Bystrzyca Kłodzka	274481,52	329293,32	736	78
3	Głuszyca	315835,92	315354,79	300	31
4	Książnica	331211,68	331372,77	480	48
5	Nagórnik	339408,68	297488,75	290	30
6	Niedamirów	318800,01	278895,35	380	39
7	Potworów	298000,66	339828,01	373	37
8	Różanka-Międzylesie	257819,91	331504,95	274	28
9	Spalona I	270200,63	323979,81	319	37
10	Spalona II	269993,93	324368,57	272	29
11	Spalona III	269824,83	324731,36	341	36
12	Spalona IV	269628,28	325087,27	170	18
13	Spalona V	269519,61	325410,66	252	27
14	Spalona VI	269365,88	325714,04	262	29
15	Spalona VII	269124,60	326136,73	216	23
16	Spalona VIII	268904,21	325492,68	246	25
17	Spalona IX	268786,17	325912,60	167	17
18	Spalona X	267630,65	325827,68	256	27
19	Srebrna Góra	304657,63	334560,36	320	33
20	Stara Łomnica	280229,95	327909,05	359	37
21	Wierzchosławice	341687,65	294298,84	430	44
22	Złotoryja	362526,76	291285,05	391	40
	SUMA			7 139	745

Tab.4. 2 Zestawienie podstawowych informacji o profilach pomiarowych

Uzyskane wyniki przeliczono na wartość wskaźnika f_1 , którego definicja wynikająca z Rozporządzenia Rady Ministrów z dnia 2 stycznia 2007 r. w sprawie wymagań dotyczących zawartości naturalnych izotopów promieniotwórczych potasu K-40, radu Ra-226 i toru Th-228 w surowcach i materiałach stosowanych w budynkach przeznaczonych na pobyt ludzi i inwentarza żywego, a także w odpadach przemysłowych stosowanych w budownictwie, oraz kontroli zawartości tych izotopów, może być zapisana w formie:

$$f_1 = C_{Ra}\!/300 + \! C_{Th}\!/200 + C_K\!/3000$$

gdzie: C_{Ra}, C_{Th}, C_K są aktywnościami radionuklidów z szeregu rozpadu uranu (²³⁸U) i toru (²³²Th) oraz potasu ⁴⁰K wyrażonymi w Bq/kg (Solecki, 2013).

¹ Długość mierzona powierzchniowo, bez uwzględnienia krzywizny terenu

4.2 Wyniki

4.2.1 Złotoryja

Badania spektrometryczne wykonano na odcinku 390 m, na 40 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 5. Pomiary wykonano spektrometrem RS230, podwieszonym na wysokości 1m pod statywem geodezyjnym. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 57 nGy/h, średnia zawartość K – 1,7 %, eU – 2,1 ppm, eTh – 8,6 ppm.

Przebieg profilu został wybrany w oparciu o wyniki badań magnetotellurycznych (rozdz. 3), gdzie na odcinku pomiędzy sondowaniami ZL_24 a ZL_38 wyinterpretowano strefę spękań. Wg. interpretacji geologicznej rozkładu oporności wzdłuż profilu 1_ZL_18, uskok znajduje się pomiędzy sondowaniami ZL_37 a ZL_38 – jego lokalizacja pokrywa się w przybliżeniu z przebiegiem przypuszczalnego uskoku, jaki został wyznaczony na SMGS (na Fig.4. 2 oznaczonego linią przerywaną).

Fig.4. 1 Lokalizacja punktów profilu spektrometrycznego Złotoryja na tle przebiegu profilu magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 2 Lokalizacja punktów profilu spektrometrycznego Złotoryja na tle przebiegu profilu magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz Krotoszyce (Jerzmański, Walczak-Augustyniak, 1993)

Fig.4. 3 Legenda do SMGS z Fig.4. 2

Fig.4. 4 Wyniki pomiarów radiometrycznych wykonanych na profilu Złotoryja w zestawieniu z morfologią terenu (krzywa czerwona).

Profil został wyznaczony na odcinku sondowań Zl_36 – ZL_41, na względnie płaskim terenie – różnica wysokości nie przekracza 8m. W centralnej części profilu, na krzywej morfologicznej wyraźnie zaznacza się rów melioracyjny (Fig.4. 4). Na północ od niego, pomiędzy punktami ZL22 a ZL25 widoczna jest skarpa o wysokości ok. 3m. Skarpa ta stanowi południową granicę występowania karbońskich łupków szarogłazowo-ilastych. Na południe od skarpy profil Złotoryja przebiega ponad czwartorzędowymi glinami deluwialnymi oraz piaskami i żwirami stożków napływowych.

Wyniki pomiarów gamma-spektrometrycznych (Fig.4. 4) wykazują bardzo niewielkie zróżnicowanie wzdłuż profilu. Wartości wskaźnika f_1 są w niewielkim stopniu niższe w rejonie występowania łupków karbońskich, co może wynikać ze zróżnicowania nagromadzenia np. minerałów skaleniowych pomiędzy utworami czwartorzędowymi a karbońskimi.

Znacznie obniżone wartości f_1 na dwóch punktach pomiarowych w południowej części profilu (ZL05 i ZL06) zlokalizowane są u zbiegu kilku leśnych "przecinek", z delikatnym wypłaszczeniem terenu (Fig.4. 4) – grunt został tu antropogenicznie zmieniony (podsypanie

kruszywem). Podsumowując, na podstawie wyników gamma-spektrometrycznych wykonanych wzdłuż profilu Złotoryja nie można wnioskować o istnieniu aktywnego uskoku czy też stref mineralizacji hydrotermalnej (U/Th <1).

4.2.2 Wierzchosławice

Profil gamma-spektrometryczny Wierzchosławice wyznaczono na podstawie wyników badań magnetotellurycznych (MT). Pomiarami objęto odcinek 430 m, na 44 punktach pomiarowych, przebiegający pomiędzy sondowaniami W19 a W24 (Fig.4. 5). Jest to miejsce gdzie na przekroju magnetotellurycznym wyinterpretowana została strefa spękaniowa (lokalne obniżenie oporności) w obrębie podłoża metamorficznego. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 6. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 19,9 nGy/h, średnia zawartość K – 0,42%, eU - 1,37 ppm, eTh – 2,66 ppm

Profil gamma-spektrometryczny został zaplanowany na stosunkowo płaskim terenie – łagodnie opadającym w kierunku wschodnim (Fig.4. 8). Profil znajduje się w obrębie arkusza SMGS: Marciszów (Cymerman, Mastalerz, 1994). W całości przebiega on ponad czwartorzędowymi glinami deluwialnymi, w podłożu których leżą prawdopodobnie piaskowce i mułowce facji czerwonego spągowca i/lub miejscami zieleńce i łupki zieleńcowe kambryjsko-ordowickie oraz czwartorzędowa glina zwałowa.

Utwory zwietrzelinowe przyjmują skład mineralogiczny skał otoczenia. W przypadku gliny deluwialnej, może być ona deponowana w innym miejscu niż miejsce pochodzenia jej materiału rodzimego, a jej skład mineralogiczny może być wypadkową np. skał otoczenia znajdujących się wyżej, na stoku. W przypadku omawianego profilu może to być wypadkowa zieleńców i łupków zieleńcowych (Cm-O) oraz piaskowców facji czerwonego spągowca.

Fig.4. 5 Lokalizacja punktów profilu spektrometrycznego Wierzchosławice na tle przebiegu profilu magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 6 Lokalizacja punktów profilu spektrometrycznego Wierzchosławice na tle przebiegu profilu magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz 797C Marciszów (Cymerman, Mastalerz, 1994)

Fig.4. 7 Legenda do SMGS z Fig.4. 6

Fig.4. 8 Wyniki pomiarów radiometrycznych wykonanych na profilu Wierzchosławice w zestawieniu z morfologią terenu (krzywa czerwona)

Wynika z tego stosunkowo niska radioaktywność wzdłuż całego profilu Wierzchosławice – zieleńce jako skały zasadowe z reguły charakteryzują się niską radioaktywnością. Natomiast podwyższoną radioaktywnością mogą charakteryzować się piaskowce czerwonego spągowca, gdzie należy się spodziewać dominujących składowych Th i U. Interpretując wyniki na profilu Wierzchosławice można więc przyjąć, że zwiększona radioaktywność związana tu będzie z czynnikami głębszymi niż powierzchniowa litologia.

Analizując wyniki pomiarów można zauważyć kilka obszarów o podwyższonych wartościach wskaźnika f₁. Pierwszy z nich to punkt W09, gdzie uwagę zwraca wyraźnie

podwyższony stosunek U/Th, wyraźnie przekraczający wartość 1, co jest przesłanką za obecnością strefy mineralizacji hydrotermalnej. Kolejne obszary to odcinki W16-W18, W28-29, W36-W39. Co prawda w żadnym z nich U/Th nie przekracza 1, ale zauważalny jest wyraźny wzrost udziału w f₁ składowych eU i eTh, co może świadczyć o obecności w podłożu dyslokacji lub spękań - koncentracja Th może być przesłanką za obecnością w podłożu brekcji tektonicznej powstałej w strefie uskokowej (Šalek i in., 2014)

Odcinek W28-29 wymaga dodatkowej uwagi, ponieważ po pierwsze na SMGS wyrysowano tam przypuszczalny uskok, o przebiegu wyznaczonym jako kontynuacja potoku, którego źródło znajduje się na WNW od profilu (Fig.4. 5), a po drugie znajduje się on bezpośrednio nad strefą obniżonych oporności (rozdz. 2, interpretacja geologiczna rozkładu oporności na profilu 1-W-18). <u>Te trzy składowe: obecność potoku, obniżenie oporności oraz podwyższenie f1 są wyraźną przesłanką dla wykonania dalszych prac badawczych w tym rejonie, ukierunkowanych na rozpoznanie uskoku.</u>

4.2.3 Nagórnik

Badania gamma-spektrometryczne wykonano na odcinku 290 m, na 30 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 7. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 16,51 nGy/h, średnia zawartość K – 0,29%, eU - 1,20 ppm, eTh – 2,35 ppm. Profil gamma-spektrometryczny został poprowadzony wzdłuż fragmentu profilu magnetotellurycznego, pomiędzy sondowaniami Na36 a Na41. Na odcinku tym zarejestrowano bowiem strefę obniżonych oporności, zinterpretowaną jako zeszczelinowany ośrodek w obrębie skał metemorficznych (rozdz. 3, profil 1-Na-18).

Południowo-zachodnia część profilu przebiega nad różnego rodzaju utworami czwartorzędowymi, w północno-wschodniej części na powierzchnię wychodzą natomiast zieleńce i łupki zieleńcowe (Fig.4. 10). Stosunkowo mały udział potasu świadczyć może o małej zasobności osadów czwartorzędowych w minerały skaleniowe. Wpływ na mniejszy udział K a większy Th i U może mieć obecność piaskowców, iłowców i mułowców facji czerwonego spągowca pod częścią osadów czwartorzędowych (Cymerman, Mastalerz, 1994). Facja czerwonego spągowca powstała w warunkach kontynentalnych i jest uboga w skalenie, które stosunkowo łatwo ulegają wietrzeniu, Th zaś posiada skłonność do pozostawania w wietrzeniowych rezyduach, w minerałach odpornych na wietrzenie, skąd może być transportowany mechanicznie (Solecki, 1997).

Fig.4. 9 Lokalizacja punktów profilu spektrometrycznego Nagórnik na tle przebiegu profilu magnetotellurycznego oraz numerycznego modelu terenu LIDAR

Fig.4. 10 Lokalizacja punktów profilu spektrometrycznego Nagórnik na tle przebiegu profilu magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz Marciszów (Cymerman, Mastalerz, 1994)

Fig.4. 11 Legenda do SMGS z Fig.4. 10

Fig.4. 12 Wyniki pomiarów radiometrycznych wykonanych na profilu Nagórnik w zestawieniu z morfologią terenu i krzywą "resztkową" morfologii terenu (krzywe czerwone).

Północno-wschodniemu fragmentowi towarzyszy znaczące zróżnicowanie topografii, co potencjalnie może źle wpływać na wyniki pomiarów. Aby podkreślić mniejsze formy topograficzne, wykonano następujące operacje matematyczne:

 policzono trend liniowy (H=X·b+a, gdzie X to współrzędna prostokątna punktu na profilu, a H wysokość punktu n.p.m., a i b to współczynniki dopasowania) od profilu topograficznego odjęto wartości linii wyznaczonego trendu liniowego uzyskując krzywą resztkową h_R

Procedurę tę zastosowano także dla kilku innych profili opisanych w dalszej części rozdziału.

W opisywanym przypadku, na wyraźnienie niski poziom wszystkich trzech wskazań: K, eU i eTh (Fig.4. 12) dominującą rolę odegrało jednak zróżnicowanie nie topografii a litologii. Jak wykazały wcześniejsze badania (Farbisz, 2013 w: Ihnatowicz i in., 2016; Solecki, 1997, 2013) nad skałami zasadowymi notuje się obniżone poziomy promieniotwórczości. Zieleńce i łupki zieleńcowe są produktem metamorfizmu regionalnego zasadowych skał magmowych, w tym przypadku bazaltów. Budujące je minerały to przeważnie chloryty, plagioklazy i epidot, które w swoim składzie nie posiadają K, U i Th.

Podczas gdy mapa geologiczna (Fig.4. 10) wskazuje, że utwory zieleńcowe pojawiają się już w okolicy punktu Ng12, to zarówno obraz NMT jak i wyniki pomiarów spektrometrycznych sugerują, że skały zieleńcowe pokazują się przy powierzchni dopiero w okolicy punktów Ng20-22. Na przekroju opornościowym spadek wskazań radiometrycznych w tym miejscu koreluje się ze zmianą oporności z niskich (odpowiadających utworom osadowym czwartorzędu) z podwyższonymi (odpowiadające zieleńcom).

Kolejny znaczący spadek na profilu spektrometrycznym widoczny jest na punkcie Ng23, od tego miejsca niskie wskazania ciągną się do północno-wschodniego końca profilu. Wyjątkiem jest punkt Ng28, gdzie skokowo wzrosły odczyty eU i eTh (Fig.4. 12). Miejsce to odpowiada kolejnej zmianie na profilu MT, pomiędzy punktami Na40 a Na41 (Fig. 4.10 i Fig. 3.7.6.7). <u>Taka korelacja może wskazywać na obecność w tym miejscu uskoku</u>.

4.2.4 Niedamirów

Badania wykonano na odcinku 380 m, na 39 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 8. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 30,86 nGy/h, średnia zawartość K – 0,67%, eU – 2,01 ppm, eTh – 4,27 ppm.

Profil spektrometryczny Niedamirów został wyznaczony na podstawie wyników badań magnetotellurycznych (MT) i sejsmicznych (Fig.4. 13). W zachodniej części profilu MT (rejon sondowań ND2, ND3, ND4) wyinterpretowana została strefa obniżonych oporności (rozdz.3, profil 1-ND-18). Wg. autorów opracowania magnetotellurycznego "*strefa ta może być interesująca z punktu widzenia geotermalnego, chociaż nie można wykluczyć jej związku z fyllitami serycytowo-chlorytowymi, które mogą być częściowo grafitowe*".

Fig.4. 13 Lokalizacja punktów profilu spektrometrycznego Niedamirów na tle przebiegu profilu sejsmicznego i magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 14 Lokalizacja punktów profilu spektrometrycznego Niedamirów na tle przebiegu profilu sejsmicznego i magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz 832C Czapiel (Szałamacha, 1958)

Fig.4. 16 Wyniki pomiarów radiometrycznych wykonanych na profilu Niedamirów w zestawieniu z morfologią terenu i krzywą "resztkową" morfologii terenu (krzywe czerwone)

Na profilu sejsmicznym (rozdz. 2, profil Niedamirów) przebiegającym po tym samym śladzie, na opisywanym powyżej odcinku znajduje się strefa obniżonych prędkości, wyklinowująca się w kierunku wschodnim.

Zmienność całkowitej dawki promieniowania (oraz wskaźnika f₁) pozostaje w korelacji ze zmianą litologii. Część zachodnia profilu przebiega nad kambryjsko-sylurskimi zieleńcami przechodzącymi w amfibolity (Fig.4. 14 i Fig.4. 15). Zieleńce powstałe w skutek płytkiego metamorfizmu zasadowych skał bazaltowych, zbudowane głównie z chlorytów, plagioklazów

i epidotów charakteryzują się niskim poziomem radioaktywności (Solecki, 1997, 2013). Przesuwając się w kierunku wschodnim wzdłuż profilu odczyty radioaktywności stopniowo rosną i wykazują swego rodzaju strefowość, związaną prawdopodobnie ze strefowością koncentracji poszczególnych minerałów w fyllitach serycytowo-chlorytowych, częściowo grafitowych, występujących w podłożu. Obszary o większej koncentracji serycytu wykazywać będą większą radioaktywność od obszarów pozostałych, co wynika z faktu, że serycyt w swoim składzie zawiera potas, a chloryt nie. Zauważyć to można na docinku ND23-ND39, gdzie występują strefowe wzrosty i spadki udziału promieniowania pochodzącego od potasu.

Fyllity występujące w podłożu są częściowo grafitowe, co świadczy o istotnej zawartości materii organicznej w skałach wyjściowych. Uran jest absorbowany między innymi przez substancję organiczną i minerały ilaste (Solecki, 1997). Podwyższone zawartości uranu w omawianych fyllitach związane mogą być z jego koncentracją w osadach ilastych, z których fyllity powstały. Na profilu Niedamirów, podwyższone koncentracje uranu można zaobserwować w punktach ND31-ND35.

Przebieg profilu morfologicznego zdominowany jest łagodnym nachyleniem terenu w kierunku wschodnim. Aby podkreślić mniejsze formy topograficzne wyliczono krzywą resztkową form morfologicznych h_R. Krzywa ta, o amplitudzie nie przekraczającej 1,5m, wskazuje na wyraźne podwyższenie terenu w okolicy Y=279 000 m, mniej więcej w miejscu zachodniej granicy strefy podwyższenia wartości eU. Strefa ta kontynuuje się na wschodnim stoku opisywanego "pagórka". Na przekroju MT strefa ta znajduje się nad wschodnią granicą strefy obniżonych oporności (rozdz. 3, profil 1-ND-18). Na przekroju sejsmicznym (rozdz. 2, profil Niedamirów), w miejscu szczytu "pagórka" występuje wyraźne ugięcie izolinii prędkości 4500 m/s, ograniczającej strefę niższych prędkości wyklinowującą się ku WNW. Wszystkie te wyniki wskazują na możliwość istnienia w tym miejscu uskoku bądź strefy uskokowej.

4.2.5 Głuszyca

Badania gamma-spektrometryczne wykonano na odcinku 300 m, na 31 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 9. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 52,8 nGy/h, średnia zawartość K - 1,6 %, eU – 2,0 ppm, eTh – 7,7 ppm. Pomiary wykonano spektrometrem RS230, który był zawieszony na wysokości 1m.

Fig.4. 17 Lokalizacja punktów profilu spektrometrycznego Głuszyca na tle przebiegu profili sejsmicznego i magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 18 Lokalizacja punktów profilu spektrometrycznego Głuszyca na tle przebiegu profili sejsmicznego i magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz M-33-45Dd Walim (Grocholski, 1956)

Fig.4. 19 Legenda do SMGS z Fig.4. 18

Fig.4. 20 Wyniki pomiarów radiometrycznych wykonanych na profilu Głuszyca w zestawieniu z morfologią terenu (krzywa czerwona).

Do pomiarów wybrano fragment profilu magnetotellurycznego (rozdz. 3, profil 1-GL-18) pomiędzy sondowaniami GL_10 a GL_15 (Fig.4. 17). W pobliżu sondowania GL_11 występuje interesująca z punktu widzenia geotermalnego strefa niskooporowa. Interpretacja danych sejsmicznych (rozdz. 2, profil Głuszyca) nie napawa jednak optymizmem – stwierdzono bowiem, że strefy uskokowe są tu scementowane późniejszą mineralizacją i nie wykazują obecnie aktywności tektonicznej. Profil o kierunku SW-NE, poprowadzony został po terenie wznoszącym się w kierunku północno-wschodnim (Fig.4. 17). Południowo-zachodnia część profilu znajduje się nad osadowymi utworami karbonu górnego, a północno-wschodnia część poprowadzona została nad gnejsami (paragnejsy i migmatyty). Te dwie jednostki rozdzielone są pasem mylonitów (Fig.4. 18).

Pomiary gamma-spektrometryczne wykazały nieznaczną zmienność radioaktywności wzdłuż profilu, co zdaje się potwierdzać wyniki sejsmiczne. Lekkie podwyższenie wartości wskaźnika f₁ występuje jedynie na odcinku od punktu GL08 do GL15. Odcinek ten przebiega nad strefą występowania w podłożu mylonitów (Fig.4. 18), które są skałami powstałymi na skutek zniszczenia skał (w tym przypadku pobliskich gnejsów) w strefie uskokowej, w warunkach niskiego metamorfizmu. W strefie tej można zauważyć lekko podwyższoną koncentrację Th, która może wynikać z nagromadzenia drobin minerałów w wyniku procesów przesuwczych. Obecność uskoku w tym miejscu postuluje również Cymerman (2010). Jest on także widoczny na przekroju opornościowym (rozdz. 3, profil 1-GL-18).

Same gnejsy należą do kwaśnych skał metamorficznych, w znacznej mierze zbudowanych ze skaleni (minerały bogate w potas) co odzwierciedlają wyniki pomiarów. Uran, w przeciwieństwie do toru nie wykazuje zdolności do koncentracji w trakcie metamorfizmu – jego ilość w analizowanych pomiarach jest zgodna z przeciętną, która dla gnejsów wynosi 2 – 2,5 ppm (Clark, 1966) lub jest nieznacznie niższa.

4.2.6 Książnica

Badania gamma-spektrometryczne wykonano na odcinku 480 m, na 48 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 10. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 45,71 nGy/h, średnia zawartość K – 0,83%, eU – 3,28 ppm, eTh – 6,50 ppm. Pomiary wykonano spektrometrem GFII, który był zawieszony na wysokości 1m.

Do pomiarów spektrometrycznych wybrano odcinek profilu magnetotellurycznego (rozdz. 3, profil 1-KS-18), pomiędzy sondowaniami KS_36 a KS_40. W rejonie sondowań KS_39 i KS_40 na głębokości poniżej 250 m p.p.m. zaobserwowano strefę obniżonych oporności, prawdopodobnie związaną ze strefą uskokową. Profil sejsmiczny (rozdz. 2, profil Książnica) został wykonany na południe od opisywanej strefy i nie zazębia się zasięgiem z profilem spektrometrycznym.

Profil gamma-spektrometryczny Książnica przebiega w pobliżu uskoku rozgraniczającego kompleksy ofiolitu Ślęży i Gór Sowich i jest zorientowany prostopadle do niego. Na powierzchni terenu występują, idąc od południa: serpentynity, zaglinione rumosze skalne, lessy po gliny zwałowe na północy (Fig.4. 22 i Fig.4. 23).

Fig.4. 21 Lokalizacja punktów profilu spektrometrycznego Książnica na tle przebiegu profili sejsmicznego i magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 22 Lokalizacja punktów profilu spektrometrycznego Książnica na tle przebiegu profili sejsmicznego i magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz Mościsko (Walczak-Augustyniak, Szałamacha, 1978)

Fig.4. 23 Wyniki pomiarów radiometrycznych wykonanych na profilu Książnica w zestawieniu z morfologią terenu (krzywa czerwona).

Wyniki pomiarów oddają przede wszystkim zmiany litologii wzdłuż profilu. Analizując wyniki pomiarów (Fig.4. 23) wyróżnić można dwie strefy. Południowa część profilu, o niższych wartościach wskaźnika f₁ (oscylujących w pobliżu wartości 0,3) związana jest z obszarem występowania serpentynitów. Strefa północna charakteryzująca się wyższą radioaktywnością to obszar występowania utworów osadowych (lessy, gliny) – w tym przypadku wskaźnik f₁ osiąga wartości rzędu 0,35 – 0,4. Granica pomiędzy tymi dwiema strefami znajduje się mniej więcej w połowie obszaru zalegania na powierzchni zaglinionego rumoszu skalnego – pomiędzy sondowaniami KS_37 i KS_38, a więc w miejscu wystąpienia zlokalizowanego za pomocą MT uskoku.

Serpentynity, będące wynikiem przeobrażenia w warunkach płytkiego metamorfizmu, różnego rodzaju skał ultrazasadowych, charakteryzują się stosunkowo niską radioaktywnością. Część rumoszu skalnego pochodzi zapewne z wietrzenia wzniesienia serpentynitowego, a jak wiadomo osady wietrzeniowe dziedziczą skład mineralny skał

macierzystych, dlatego prawdopodobnie część obszaru rumoszu skalnego wykazuje radioaktywność zbliżoną do samych serpentynitów.

W północnej części profilu ogólnie wyższy poziom radioaktywności może wynikać z obecności w podłożu glin zwałowych, również pod rumoszem skalnym i lessami, które mogą zawierać materiał o różnym składzie mineralogicznym, również minerały zasobne w potas. Występujące tu lessy mogą być same w sobie wystarczająco radioaktywne (Solecki, 2000)

4.2.7 Brzozowie

Badania gamma-spektrometryczne wykonano na odcinku 310 m, na 32 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 11 i Tab.4. 12. Mierzono dwoma spektrometrami, gdzie GFII był zawieszony na wysokości 1m, a RS230 leżał bezpośrednio na gruncie. Z przyczyn technicznych nie udało się wykonać pomiarów spektrometrem GFII wzdłuż całego profilu – stąd skrócony wykres na Fig.4. 27. Pełne wyniki ze spektrometru RS230 zostały natomiast przedstawione na Fig.4. 28. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 40,05 nGy/h, średnia zawartość K – 1,03 %, eU - 1,71 ppm, eTh – 6,44 ppm dla pomiarów spektrometrem RS230. Dla spektrometru GF II te wartości to odpowiednio: DR – 36,56 nGy/h, K – 0,70 %, eU – 2,60 ppm, eTh – 5,09 ppm.

Profil wyznaczono wzdłuż fragmentu profilu sejsmicznego (Fig.4. 24), na odcinku w obrębie którego występuje strefa obniżonych prędkości sejsmicznych (rozdz.2, profil Brzozowie), a co za tym idzie na odcinku podejrzewanym (na wstępnym etapie interpretacji, bez uwzględnienia wyników badań tomografii elektrooporowej) o istnienie tam strefy uskokowej.

Północno-wschodnia część profilu została przeprowadzona przez wyniesienie kredowe, wyraźnie widoczne na mapach topograficznej i NMT (Fig.4. 24), co biorąc pod uwagę geometrię ośrodka pomiarowego mogło wpłynąć na obniżenie mierzonych wartości na szczycie wzniesienia, a na podwyższenie w dolinie (punkty Brz17 – Brz21). Efekt ten jest widoczny na Fig.4. 27. Na południowy zachód od wzniesienia, po przekroczeniu doliny potoku teren równomiernie podnosi się ku południowemu zachodowi. Profil jest zatem poprowadzony prostopadle do osi struktur morfologicznych. Wyraźnie widoczne jest podwyższenie wartości wskaźnika f_1 w zagłębieniu terenu, w centralnej części profilu. Jednocześnie jednak, poziom emisji uranu nie wzrósł.

Fig.4. 24 Lokalizacja punktów profilu spektrometrycznego Brzozowie na tle przebiegu profili sejsmicznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 25 Lokalizacja punktów profilu spektrometrycznego Brzozowie na tle przebiegu profilu sejsmicznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz 993A Kudowa Zdrój (Gierwielaniec, 1955)

Fig.4. 26 Legenda do SMGS z Fig.4. 25.

Fig.4. 27 Wyniki pomiarów radiometrycznych wykonanych spektrometrem GFII (na wysokości 1m) na profilu Brzozowie w zestawieniu z morfologią terenu (krzywa czerwona).

Wpływ litologii na pomiary w tym profilu jest stosunkowo niewielki. Deluwia zbudowane są ze skał otoczenia i podścielających je, to jest z: górnokredowych margli ilastych i margli krzemionkowych, głównie z poziomu *Inoceramus Lamarcki*. Skały te charakteryzują się stosunkowo niską radioaktywnością (Miecznik i in., 1980).

Spośród całego profilu na uwagę zasługuje jedynie odcinek pomiędzy punktami Brz8-Brz12. Na tym odcinku występuje znaczące zróżnicowanie pomiarów – spadek wskazań w paśmie uranowym, duże skoki wskaźnika f_1 – które koreluje się z początkiem wyraźniejszego nachylenia terenu. Jest to też południowo-zachodnia granica strefy obniżonych prędkości

wskazanej na profilu sejsmicznym (rozdz. 2, profil Brzozowie), a zinterpretowanej jako potencjalna strefa uskokowa.

Fig.4. 28 Wyniki pomiarów radiometrycznych wykonanych spektrometrem RS230 (na wysokości 0m) na profilu Brzozowie w zestawieniu z morfologią terenu (krzywa czerwona).

4.2.8 Srebrna Góra

Badania gamma-spektrometryczne wykonano na odcinku 320 m, na 33 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 13. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 53,25 nGy/h, średnia zawartość K – 1,6 %, eU - 1,74 ppm, eTh – 8,26 ppm. Pomiary wykonano spektrometrem RS230, podwieszonym pod statywem geodezyjnym na wysokości 1 m n.p.t.

Do pomiarów wybrany został fragment profilu magnetotellurycznego – odcinek pomiędzy sondowaniami SG_18 a SG_22. W rejonie tym, na przekroju opornościowym, poniżej niskooporowego nadkładu związanego z osadami kenozoicznymi, w gnejsach wyznaczono uskok i towarzyszącą mu strefę spękaną sięgającą głębokości 2 km p.p.m (rozdz. 3, profil 1-SG-18). Strefę tę uznano za perspektywiczną z punktu widzenia geotermalnego i dlatego została wyznaczona do dalszych badań.

Fig.4. 29 Lokalizacja punktów profilu spektrometrycznego Srebrna Góra na tle profilu magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR.

Fig.4. 30 Lokalizacja punktów profilu spektrometrycznego Srebrna Góra na tle przebiegu profilu magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz M33-58 Ab, Ostroszowice (Trepka, Gawroński, 1957)

CZWARTORZĘD

Fig.4. 31 Legenda do SMGS z Fig.4. 30

Fig.4. 32 Wyniki pomiarów radiometrycznych wykonanych na profilu Srebrna Góra w zestawieniu z morfologią terenu (krzywa czerwona)

Profil o kierunku SW-NE przebiega po stosunkowo lekko nachylonym ku NE terenie (amplituda wysokości rzędu 16 m na odcinku 330m, Fig.4. 29). Profil ten w całości przebiega przez zagliniony rumosz skalny (Fig.4. 30). Prawdopodobnie osady te powstały z niszczenia masywów paragnejsowych biotytowo-oligoklazowych i migmatytowych znajdujących się na południe od profilu. Paragnejsy są skałami kwaśnymi, bogatymi w potas. Podobnie jak migmatyty, które zawierają w swoim składzie dużo minerałów bogatych w potas, co przekłada się na podwyższoną radioaktywność. Osady, przez które przebiega profil odziedziczyły po rodzimych skałach stosunkowo wysoką radioaktywność (f₁ rzędu 0,4-0,5). Niewielkie zmiany spowodowane są raczej różnym nagromadzeniem minerałów zasobnych w poszczególne pierwiastki niż obecnością nieciągłości strukturalnej.

Gwałtowne obniżenie wartości f_1 w punkcie SR10 wynika prawdopodobnie z faktu, że punkt ten jest zlokalizowany w obrębie dawnej linii kolejowej, a więc i pozostałości po nasypie kolejowym.

4.2.9 Potworów

Badania gamma-spektrometryczne wykonano na odcinku 373 m, na 37 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 14. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 39,8 nGy/h, średnia zawartość K – 1,1 %, eU – 1,5 ppm, eTh – 6,4 ppm. Do pomiarów został wyznaczony fragment dłuższego z dwóch profili profili sejsmicznych (rozdz. 2, profil Potworów), pomiędzy jego 60 m a 430 m (Fig.4. 33). Na odcinku tym wyintepretowane zostały dwie strefy uskokowe, pomiędzy którymi zaobserwowano obniżenie podłoża podkenozoicznego.

Pomiary na profilu gamma-spektrometrycznym wykonano spektrometrem RS230, który był zawieszony na wysokości 1m. Profil o kierunku S-N poprowadzony został po łagodnie nachylonym zboczu o podobnym kierunku (Fig.4. 35). Cały profil przebiega nad utworami czwartorzędowymi, z tym że w okolicach punktu PT10 przebiega granica pomiędzy utworami holocenu (na południu) i plejstocenu (na północy) (Fig.4. 34). Przejście to nie znajduje jednak odzwierciedlenia w wynikach pomiarów spektrometrycznych.

Fig.4. 33 Lokalizacja punktów profilu spektrometrycznego Potworów na tle profilu sejsmicznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Pomiary wzdłuż całego profilu wykazują łagodne zmiany. Jedyna wyraźnie widoczna zmiana poziomu wskaźnika f_1 znajduje się pomiędzy punktami PT22 a PT23. Wynika ona głównie ze spadku składowej potasowej (f_{1K}), co związane jest prawdopodobnie ze zmianą podłoża glebowego – jest to granica pomiędzy polem uprawnym (od strony południowej), a obszarem zakrzewionym (opuszczony sad? od strony północnej). Nie należy zatem wiązać tej zmiany z procesami w podłożu podczwartorzędowym. Uwagę należy zwrócić natomiast na odcinek na północnym krańcu profilu tj. PT34-PT37, gdzie zarejestrowany został wzrost wskazań eU. Jest to odcinek odpowiadający strefie uskokowej wyznaczonej metodą sejsmiczną (ok. 390 m na profilu sejsmicznym Potworów). Taki wzrost może być związany albo z samą strefą tektoniczną, albo wynikać z podniesienia podłoża podkenozoicznego na północ od tejże strefy.

Fig.4. 35 Wyniki pomiarów radiometrycznych wykonanych na profilu Potworów w zestawieniu z morfologią terenu (krzywa czerwona)

4.2.10 Stara Łomnica

Badania spektrometryczne wykonano na odcinku 360 m, na 37 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 15. Pomiary wykonano spektrometrem RS230, leżącym bezpośrednio na gruncie – wyniki zostały przedstawione na Fig.4. 39. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 39,18 nGy/h, średnia zawartość K – 1,05 %, eU – 1,64 ppm, eTh – 6,15.

Profil spektrometryczny został wytyczony na podstawie wyników wcześniejszych badań sejsmicznych (rozdz.2, profil Stara Łomnica, odcinek od 380 do 745 m) oraz profilu magnetotellurycznego, przesuniętego o ok. 0,5 km w kierunku zachodnim (rozdz. 3, profil 1-SL-18).

Fig.4. 36 Lokalizacja punktów profilu spektrometrycznego Stara Łomnica na tle przebiegu profilu sejsmicznego i magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 37 Lokalizacja punktów profilu spektrometrycznego Stara Łomnica na tle przebiegu profilu sejsmicznego i magnetotellurycznego oraz Szczegółowej Mapy Geologicznej Sudetów, arkusz 901C, Polanica Zdrój (Wójcik, 1957)

Fig.4. 38 Legenda do SMGS z Fig.4. 37

Fig.4. 39 Wyniki pomiarów radiometrycznych wykonanych spektrometrem RS230 (na wysokości 0m) na profilu Stara Łomnica w zestawieniu z morfologią terenu (krzywa czerwona).

Prawdopodobnie duży wpływ na wyniki pomiarów gamma-spektrometrycznych miało wzgórze (Góry Ścienne, Fig.4. 36) – morfologia znajduje swoje odbicie w wynikach pomiarów, co dobrze obrazuje wykres na Fig.4. 39. Wartość f1 stopniowo spada od SŁ06 do SŁ12 gdzie profil dochodzi do szczytu wzniesienia. Dalej w kierunku północnym z powrotem wzrastają osiągają stabilny poziom mniej więcej przy punkcie SŁ17.

Południowa część profilu (do ok. punktu SŁ25) przebiega nad wyniesieniem kredowym (turon) a północna część nad glinami deluwialnymi czwartorzędu (Fig.4. 37).

Utwory kredowe to piaskowce kwarcowo-skaleniowe, ciosowe, które pomimo istotnego udziału skaleni ogólnie nie wykazują podwyższonej radioaktywności (Miecznik i in., 1980). Pomimo takiej charakterystyki, na odcinku od SŁ17 (początek względnego wypłaszczenia terenu) do SŁ25 (granica pomiędzy Cr a Q) zauważyć można wyraźne zróżnicowanie wartości f₁. Wskaźnik f₁ osiąga wartość maksymalną w punkcie S19. Punkt ten znajduje się ok. 560 m profilu sejsmicznego, a więc w miejscu gdzie wyznaczono strefę uskokową (rozdz. 2, profil Stara Łomnica). Wyniki badań gamma-spektrometrycznych zdają się zatem potwierdzać istnienie tejże strefy i mogą sugerować potrzebę wykonania w tym miejscu dodatkowych prac geologicznych.

Potwierdzenia w wynikach gamma-spektrometrycznych nie znajduje natomiast strefa obniżonych oporności wyznaczona za pomocą badań magnetotellurycznych (rozdz.3, profil 1-SL-18). Na profilu spektrometrycznym, ewentualnego potwierdzenia należałoby zapewne szukać w okolicy punktów SŁ34 – SŁ37, a więc przy północnym krańcu profilu. Pierwotnie planowano poprowadzenie profilu gamma-spektrometrycznego dalej w kierunku północnym. Pomiarów niestety nie udało się zrealizować do końca w wyniku braku zgody właściciela terenu na prace wzdłuż krawędzi jego pola uprawnego.

4.2.11 Bystrzyca Kłodzka

Badania gamma-spektrometryczne wykonano na odcinku 760 m, na 78 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 16 i Tab.4. 17. Podobnie jak w przypadku profilu Brzozowie, pomiary wykonano dwoma spektrometrami, gdzie GFII był zawieszony na wysokości 1m, a RS230 leżał bezpośrednio na gruncie. Wyniki pomiarów ze spektrometru GFII przedstawione zostały na Fig.4. 42, a ze spektrometru RS230 na Fig.4. 43. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 47,04 nGy/h, średnia zawartość K – 1,02 %, eU – 3,12 ppm, eTh – 6,40 ppm dla pomiarów spektrometrem GFII. Dla spektrometru RS230 te wartości to odpowiednio: DR – 47,58 %, K – 1,32 %, eU – 1,92 ppm, eTh – 7,34 ppm.

Do pomiarów gamma-spektrometrycznych wybrano zachodnią część profilu sejsmicznego (rozdz. 2, profil Bystrzyca), gdzie w wyniku połączonej interpretacji danych prędkościowych i opornościowych wyznaczono strefę uskokową i dwa dodatkowe uskoki. Wschodnia część profilu spektrometrycznego znajduje się w okolicy przecięcia profilu sejsmicznego z profilem magnetotellurycznym (rozdz.3, profil 1-BK-18).
Profil o kierunku W-E, poprowadzony został po łagodnie nachylonym zboczu (Fig.4. 40). Zachodnia część profilu prowadzi wzdłuż krawędzi wąwozu potoku, z osadami rzecznymi czwartorzędu (Fig.4. 41). Wschodnia część natomiast znajduje się na utworach kredowych. Utworami kredowymi są tu iły margliste oraz margle piaszczyste. Skały kredowe wykazują niską radioaktywność, albowiem środowisko ich sedymentacji nie sprzyjało koncentracji związków uranowych (Miecznik i in., 1980), a minerały ilaste składające się na iły najwidoczniej nie są tak bogate w potas, aby istotnie zróżnicować odczyty. Czwartorzędowe deluwia (centralna część profilu), które powielają zazwyczaj skład mineralny skał podłoża i otoczenia, mogą wykazywać nieznacznie podwyższoną radioaktywność ze względu na obecność w zwietrzelinie drobin powstałych z erozji paragnejsów (skały kwaśne), obecnych w wyższych partiach stoku (Fistek, Gierwielaniec, 1957), zasobnych w skalenie i plagioklazy.

Wyraźne zróżnicowanie wartości wskaźnika f_1 w zachodniej części profilu (maksima f_1 na punktach KŁ67 i KŁ 74) tylko częściowo może być wiązane z przebiegiem profilu nad skarpą wąwozu (Fig.4. 40). Głównej przyczyny takiego zróżnicowania należy przypuszczalnie upatrywać w istnieniu strefy uskokowej zidentyfikowanej metodą sejsmiczną, a wchodzącej (jak wynika z interpretacji sejsmicznej) w gnejsy podłoża prekambryjskiego.

Fig.4. 40 Lokalizacja punktów profilu spektrometrycznego Bystrzyca Kłodzka na tle przebiegu profili sejsmicznego i magnetotellurycznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Spośród uskoków wykreślonych na przekroju sejsmicznym i ERT na profilu gammaspektrometrycznym dość wyraźnie zaznacza się uskok na ok. 600m profilu sejsmicznego, czemu odpowiadają punkty KŁ07-KŁ08. Występuje tu lokalne podwyższenie wartości f₁, przy udziale (zwłaszcza na punkcie KŁ08) wzrostu zawartości uranu, co po pierwsze jest potwierdzeniem istnienia uskoku, a skokowy wzrost parametru U/Th (wartość bliska 1) może świadczyć o istnieniu tu mineralizacji hydrotermalnej.

Fig.4. 42 Wyniki pomiarów radiometrycznych wykonanych spektrometrem GFII (na wysokości 1m) na profilu Bystrzyca Kłodzka w zestawieniu z morfologią terenu .

Fig.4. 43 Wyniki pomiarów radiometrycznych wykonanych spektrometrem RS230 (na wysokości 0m) na profilu Bystrzyca Kłodzka w zestawieniu z morfologią terenu .

4.2.12 Spalona, profile I - X

Seria profili gamma-spektrometrycznych w Spalonej wykonana została na początku realizacji II etapu tematu "Młode strefy tektoniczne...", zanim powstał koreferat do opracowania I etapu. To w wyniku koreferatu wprowadzone zostały zmiany do metodyki pomiarów. Profile w Spalonej mierzone były natomiast podobnie jak to było robione w etapie I – bezpośrednio na gruncie. Wydłużono natomiast czas rejestracji do 10 min, a krok pomiarowy skrócono do 10 metrów. Takie zmiany były sugerowane we wnioskach "Raportu końcowego – Młode strefy tektoniczne – etap I, 2018".

Ideą było wykonanie kilku równoległych do siebie profili śledzących pojedynczy lineament, wyznaczony poprzez analizę obrazu LIDAR, znajdującego się w obrębie jednego wydzielenia litologicznego. Dzięki spełnieniu takiego warunku, z analizy wyników badań gamma-spektrometrycznych wyeliminowany byłby jeden z czynników powodujących zmiany wskazań.

Do badań wybrano obszar Gór Bystrzyckich. Obszar zlokalizowany jest w obrębie arkusza SMGS Bystrzyca Nowa (Fistek, Gierwielaniec, 1957). Dominującą litologią są różnego typu gnejsy (warstewkowe, granitognejsy, paragnejsy), a miejscami, w dolinach potoków obecne są wypełnienia osadami czwartorzędowymi.

W rejonie schroniska PTTK "Jagodna" w Spalonej wyznaczono 10 profili przecinających cztery lineamenty morfologiczne. Łączna długość profili wyniosła 2,63 km – wykonano pomiary na 268 stanowiskach pomiarowych. Dwa lineamenty są ułożone niemal współliniowo (Fig.4. 44), a rozdzielone są jedynie siecią cieków wodnych (potoków). Lineamenty trzeci i czwarty są oddalone od nich w kierunku południowym (Fig.4. 54). Wyniki pomiarów zebrano w tabelach od Tab.4. 18 do Tab.4. 27. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilach wynosi 56,65 nGy/h, średnia zawartość K – 1,69 %, eU – 3,34 ppm, eTh – 6,28 ppm.

Przez pierwszy, wysunięty najdalej na zachód lineament poprowadzone zostały 4 profile (Spalona I do Spalona IV, Fig.4. 44). Wyniki pomiarów dla poszczególnych profili przedstawiono na Fig.4. 47 – Fig.4. 50.

Na profilu Spalona I (Fig.4. 47), na przekroju morfologicznym na pierwszy plan wybija się dolina w centralnej części profilu. Jest ona wypełniona osadami rzecznymi. Na obu skrajach doliny zanotowano podwyższone odczyty w paśmie eU, a przez to podwyższony współczynnik U/Th, który jest wskaźnikiem mineralizacji hydrotermalnej (Farbisz, 2013 w Ihnatowicz i in., 2016). Na kolejnych profilach, wzdłuż lineamentu odnajdywane były ślady

133

żyły kwarcowej (Fig.4. 46). W samym centrum doliny zarejestrowano natomiast chyba najniższe wartości wpośród wszystkich rejestracji wzdłuż profilu.

Profil Spalona II (Fig.4. 48) przecina lineament morfologiczny w okolicy punktu S_II_16. Wzdłuż całego profilu zarejestrowane wartości są jednak na tyle zróżnicowane, że ciężko wnioskować na ich podstawie potwierdzająco bądź negująco o istnieniu uskoku.

Wyniki na profilu Spalona III (Fig.4. 49), poprowadzonym po nachylonym zboczu (różnica poziomów ok. 20 m), można podzielić na dwie części. Część południowo zachodnia przebiegająca nad gnejsami i granitognejsami charakteryzuje się stosunkowo wysokimi, ale o małym zróżnicowaniu, wartościami wskaźnika f₁. Część północno-wschodnia dla odmiany wykazuje znacznie niższe wartości f₁, przy jednoczesnym większym ich zróżnicowaniu. Ta część profilu charakteryzuje się również wyższymi wskazaniami współczynnika U/Th. Granica pomiędzy obiema częściami przebiega w bliskim sąsiedztwie lineamentu morfologicznego.

Fig.4. 44 Lokalizacja punktów profili spektrometrycznych Spalona I – VII na tle numerycznego modelu terenu LIDAR. Czerwone strzałki wskazują na lineament, który stał się podstawą wyznaczenia przebiegu profili.

Fig.4. 45 Sytuacja przedstawiona na Fig.4. **44** z dołączoną do tła Szczegółową Mapą Geologiczną Sudetów, arkusz Bystrzyca Nowa (Fistek, Gierwielaniec, 1957).

Fig.4. 46 Jeden z fragmentów żyły kwarcowej odnajdywanych wzdłuż pierwszego z lineamentów (profile Spalona I – IV)

Fig.4. 47 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona I w zestawieniu z morfologią terenu (krzywa czerwona)

Fig.4. 48 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona II w zestawieniu z morfologią terenu (krzywa czerwona)

Fig.4. 49 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona III w zestawieniu z morfologią terenu.

Fig.4. 50 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona IV w zestawieniu z morfologią terenu.

Co ciekawe lineament widoczny na zdjęciu LIDAR (Fig.4. 44), na przekroju morfologicznym jest właściwie niewidoczny – nawet po odjęciu liniowego trendu (krzywa Δ h na Fig.4. 49). Na krzywej tej uwidacznia się natomiast niewielka skarpa w okolicy punktów S_III_14, S_III_15. Skarpie tej odpowiada lokalne podwyższenie parametru U/Th, przy jednoczesnym spadku poziomu wskaźnika f₁. Jest to zjawisko analogiczne do zaobserwowanego w dolinie na profilu Spalona I.

Profil Spalona IV jest najkrótszy (Fig.4. 50), ale to na nim najwyraźniej zaznacza się lineament morfologiczny. Profil Spalona IV przecina go w punkcie S_IV_10, gdzie ponownie obserwujemy najniższe wskazania radioaktywności, którym jednak nie towarzyszy podwyższenie parametru U/Th.

Drugi z wyznaczonych za pomocą zdjęcia LIDAR lineament z grubsza pokrywa się przebiegiem z przypuszczalnym uskokiem zaznaczonym na SMGS (Fig.4. 45). Rozpoznano go trzema profilami: Spalona V – Spalona VII.

Profil Spalona V przebiega ponad osadami deluwialnymi, napotykając na swojej drodze kilka potoków i towarzyszących im terenów podmokłych. To powoduje, że na przekroju morfologicznym lineament jest niewidoczny, nawet po usunięciu trendu liniowego. Jak więc został tu wyznaczony? Jako przedłużenie lineament widocznego na wschód (na profilach Spalona VI i VII) w kierunku pierwszego z opisywanych lineamentów. Pomimo braku wyraźnych struktur morfologicznych, na profilu Spalona V ponownie obserwowane są lokalne obniżenia radioaktywności z towarzyszącymi wzrostami parametru U/Th. Dzieje się tak na punktach S_V_18, leżącym na granicy osadów rzecznych i deluwialnych (tu na krzywej resztkowej morfologii, po usunięciu trendu liniowego, widoczna dolinka potoku) oraz na punkcie S_V_12, blisko granicy pomiędzy glinami deluwialnymi a granitognejsami.

Na profilu Spalona VI (Fig.4. 52) zmienność f₁ koreluje się ze zmianą litologii. Patrząc od południowego wschodu, najwyższe wskazania obserwowane są nad granitognejsami, następnie lekko niższe ponad gnejsami, osiągając najniższe wartości nad osadami rzecznymi. Na uwagę zasługują dwa odcinki o podwyższonym f₁, którym towarzyszą lekkie "wybrzuszenia" morfologiczne – są to odcinki pomiędzy punktami S_VI_24 a S_VI_21 praz pomiędzy punktami S_VI_13 a S_VI_12. Nie jest to efekt wynikający z morfologii, ponieważ teoretycznie w przypadku pomiarów na obszarze wyniesionym, można oczekiwać zaniżonych wartości pomierzonych, a tu efekt jest odwrotny. Są to natomiast miejsca gdzie występują kontakty różnych wydzieleń litologicznych (na podst. Fistek, Gierwielaniec, 1957).

Fig.4. 51 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona V w zestawieniu z morfologią terenu (krzywa czerwona)

Fig.4. 52 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona VI w zestawieniu z morfologią terenu (krzywa czerwona)

Fig.4. 53 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona VII w zestawieniu z morfologią terenu (krzywa czerwona)

Podobnie zmieniają się odczyty wzdłuż profilu Spalona VII (Fig.4. 53) tj. nad gnejsami zarejestrowano wyższe wartości f₁ niż nad osadami rzecznymi, przy czym w tym wypadku kontaktowi tych dwóch wydzieleń litologicznych towarzyszy wzrost współczynnika U/Th powyżej wartości 1. Wg. mapy SMGS (Fig.4. 45) osady rzeczne przykrywają przypuszczalny uskok. Być może potwierdzeniem obecności uskoku jest pomiar na punkcie S_VII_6, gdzie już w obrębie odcinka o stosunkowo niskich wartościach wskaźnika f₁ zarejestrowano jego skokowy wzrost.

Trzeci z badanych lineamentów został rozpoznany dwoma profilami (Spalona VIII i Spalona IX (Fig.4. 54, lineament wskazany czerwoną strzałką). Wg. SMGS (Fig.4. 55) przebiegają ponad gnejsami i granitognejsami z wąską strefą osadów rzecznych w południowej części profilu Spalona VIII. Podobnie jak na poprzednich profilach ponad granitognejsami rejestrowane są lekko wyższe wartości f₁ niż nad gnejsami. Przyczyny spadku f1 w północno wschodniej części profilu należy upatrywać w ukształtowaniu terenu – ten fragment profilu znajduje się na stoku skarpy (Fig.4. 56). Odmiennie natomiast w porównaniu z profilami Spalona VI czy VII, osady rzeczne charakteryzują się podwyższonymi wartościami f₁ na odcinku S_VIII_21 – S_VIII_17, z maksimum na punkcie S_VIII_18. Na SMGS (Fig.4. 55) zaznaczono tu źródło potoku, założonego na

przypuszczalnym uskoku. Być może zatem podniesione wartości f_1 na omawianym odcinku są potwierdzeniem istnienia tegoż uskoku.

Przedłużeniem lineamentu przechodzącego przez punktu S_VIII_18 na profilu Spalona IX jest odcinek pomiędzy punktami S_IX_7 i S_IX_8. Niestety na profilu tym nie zarejestrowano znaczących zmian w wynikach pomiarów spektrometrycznych. Delikatny spadek wartości na północno-wschodnim końcu profilu może być (analogicznie jak na profilu Spalona VIII) efektem względnego podniesienia terenu.

Fig.4. 54 Lokalizacja punktów profili spektrometrycznych Spalona VIII – X na tle numerycznego modelu terenu LIDAR. Czerwone strzałki wskazują na lineament, który stał się podstawą wyznaczenia przebiegu profili.

Fig.4. 55 Sytuacja przedstawiona na Fig.4. 54 z dołączoną do tła Szczegółową Mapą Geologiczną Sudetów, arkusze Bystrzyca Nowa (Fistek, Gierwielaniec, 1957) i Poręba (Kozdrój, 1990). Legenda do SMGS jak na Fig.4. 45.

Ostatni profil – Spalona X – przecina lineament wysunięty najdalej na południe (Fig.4. 54). Jest on wyraźnie widoczny na mapie NMT, ale znacznie słabiej zaznacza się na krzywej morfologii wyciętej z NMT (Fig.4. 58). Z tego też względu, podobnie jak w przypadku kilku wcześniejszych profili, od krzywej morfologicznej odjęto trend liniowy. Dzięki temu lineament stał się lepiej widoczny. Uzyskany efekt "paraboli" ma związek z innym kątem nachylenia terenu – na północ od punktu S_X_8 teren delikatnie się wypłaszcza.

Fig.4. 56 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona VIII w zestawieniu z morfologią terenu (krzywa czerwona)

Fig.4. 57 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona IX w zestawieniu z morfologią terenu (krzywa czerwona)

Fig.4. 58 Wyniki pomiarów radiometrycznych wykonanych na profilu Spalona X w zestawieniu z morfologią terenu (krzywa czerwona)

Na punkcie S_X_8 zarejestrowano podwyższoną radioaktywność, a w punkcie S_X_9, tj. kolejnym punkcie w kierunku południowym, wystąpiło nieznaczny wzrost na krzywej U/Th. Być może jest to przejaw istnienia w tym miejscu uskoku.

Wracając natomiast do rozpatrywanego lineamentu LIDAR – jest on widoczny na wysokości punktu S_X_{16} – na sąsiadującym z nim od północy punkcie S_X_{15} następuje podwyższenie wartości wskaźnika f_1 , co również może być wskaźnikiem obecności uskoku.

Podsumowując wyniki uzyskane na całym obszarze Spalona należy stwierdzić, że badane lineamenty są uskokami, często wypełnionymi mineralizacją hydrotermalną (podwyższony stosunek U/Th, żyły kwarcowe). Uskoki te są założone w gnejsach i granitognejsach, które to skały charakteryzują się wysoką radioaktywnością. Pomiary na uskoku, na takim tle często wykazują obniżoną radioaktywność.

4.2.13 Różanka – Międzylesie

Badania gamma-spektrometryczne wykonano na odcinku 274 m, na 28 punktach pomiarowych. Współrzędne i wyniki pomiarów zestawiono w Tab.4. 28. Średnia wartość mocy dawki naturalnego promieniowania gamma na profilu wynosi 41,2 nGy/h, średnia zawartość K – 1,1 %, eU – 1,7 ppm, eTh – 6,6 ppm. Pomiary wykonywane były spektrometrem RS230, powieszonym na wysokości 1m pod statywem geodezyjnym.

Pomiarami gamma-spektrometrycznymi objęto wschodnią część profilu sejsmicznego (rozdz. 2, profil Różanka, pomiędzy ok. 190 m a 470 m). W części tej, w wyniku połączonej interpretacji danych sejsmicznych i ERT, wyznaczono dwa uskoki i jedną strefę uskokową rozcinające margle i piaskowce kredowe.

Wschodnia część profilu gamma-spektrometrycznego jest stosunkowo płaska (amplituda morfologii nie przekracza 4 m). Zachodnia część profilu (na zachód od wąwozu zaznaczającego się wyraźnie na krzywej morfologicznej - Fig.4. 60) wznosi się dość znacząco ku zachodowi, co znajduje swoje odbicie w wynikach pomiarów gamma-spektrometrycznych. Wskaźnik f₁ osiąga minimalną wartość na ostatnim punkcie ML28 – punkcie leżącym u stóp ponad 10-metrowej skarpy zmienionej antropogenicznie (poza profilem), obecność której na pewno mogła mieć wpływ na wyniki pomiarów.

We wschodniej części profilu gamma-spektrometrycznego zauważyć można skokowe zmiany radioaktywności, głównie składowych uranowej i torowej. Wzrost wartości f_1 na punktach ML04 i ML05 odpowiada strefie uskokowej na ok. 440 m profilu sejsmicznego. Jest to zarazem potwierdzenie jej obecności i być może jej aktywnego charakteru.

Fig.4. 59 Lokalizacja punktów profilu spektrometrycznego Różanka - Międzylesie na tle profilu sejsmicznego oraz mapy topograficznej i numerycznego modelu terenu LIDAR

Fig.4. 590 Lokalizacja punktów profilu spektrometrycznego Różanka - Międzylesie na tle Szczegółowej Mapy Geologicznej Sudetów, arkusz Międzylesie (Sawicki, 1962)

Fig.4. 61 Legenda do SMGS z Fig.4. 59

Fig.4. 60 Wyniki pomiarów radiometrycznych wykonanych na profilu Różanka-Międzylesie w zestawieniu z morfologią terenu (krzywa czerwona)

4.3 Stężenie radonu (²²²Rn) w powietrzu glebowym

Do pomiarów stężenia radonu ²²²Rn w powietrzu glebowym wybrano punkty zlokalizowane wzdłuż profili geofizycznych, biorąc pod uwagę wyniki geologicznej interpretacji badań geofizycznych. Jeden z punktów wyznaczano poza nieciągłościami tektonicznymi, tak aby pomierzyć zawartość radonu w ośrodku niezaburzonym (tło), a następne nad wybranymi, potencjalnie obiecującymi strefami tektonicznymi.

Pomiary wykonano przy wykorzystaniu detektor Rad7 firmy Durridge. Czujnik wbijany był na głębokość rzędu 50 – 70cm. Pomiary wykonywano w czterech pięciominutowych cyklach.

4.3.1 Głuszyca

Pomiary wykonane zostały na trzech punktach: punkt GL1_Rn pokrywa się z lokalizacją sondowania MT GL16, punkt GL2_Rn z sondowaniem GL13, a punkt GL3_Rn z sondowaniem GL10. Lokalizacja prac względem profilu magnetotellurycznego (rozdz. 3, profil 1-GL-18) została przedstawiona na Fig.4. 61. Współrzędne oraz wyniki pomiarów zebrane zostały w Tab.4. 3. Wg. interpretacji magnetotellurycznej tylko GL3_Rn znajduje się ponad karbońskimi zlepieńcami i piaskowcami. Pozostałe dwa punkty znajdują się natomiast już po stronie gnejsów sowiogórskich. Strefa uskokowa znajduje się natomiast pomiędzy punktami GL3_Rn a GL2_Rn.

	X [m]	Y [m]		222 Rn _{min} [kBq/m ³]	²²² Rn _{max} [kBq/m ³]
GL1_Rn	315926,08	315483,55	94,3	85,4	101,0
GL2_Rn	315847,11	315387,93	48,0	38,0	53,2
GL3_Rn	315767,92	315229,37	54,9	46,9	62,0

Tab.4. 3 Lokalizacja oraz wyniki pomiarów stężenia ²²²Rn w powietrzu glebowym na profilu Głuszyca

We wszystkich trzech punktach zarejestrowano zaskakująco wysokie stężenia ²²²Rn. Wg. Wołkowicza (2007) stężenie ²²²Rn w zlepieńcach i piaskowcach karbońskich jest bardzo zróżnicowane – może wahać się w granicach od niemal 0 do ponad 150 kBq/m³, ale średnia arytmetyczna to zaledwie 13,49 kBq/m³. Teoretycznie więc wszystkie pomiary uzyskane na

Fig.4. 61 Lokalizacja pomiarów stężenia radonu względem wyników magnetotellurycznych na profilu 1-GL-18 (Fig. 3.7.7.6). Czerwona skala pokazuje wartości maksymalne, średnie i minimalne stężenia radonu (Tab. 4.3).

profilu Głuszyca mieszczą się w realnym zakresie wartości, znacząco jednak odbiegają od wartości średniej. Najwyższe stężenie radonu stwierdzono w punkcie GL1_Rn, który to punkt występuje nad lokalną strefą obniżonej oporności (punkt GL_16 na profilu MT, Fig. 4.63), która sięga do głębokości ok. 150 m poniżej poziomu terenu. Nie możemy skorelować tego punktu z wynikami badań γ-spektrometrycznych, ponieważ profil γ-spektrometryczny skończył się na wysokości magnetotellurycznego punktu GL_15. Na Fig.4. 62 przedstawiono wystąpienia mineralizacji uranowej na tle mapy tektonicznej Sudetów (Cymerman, 2010). Lokalizacje te są zaznaczone z dużym przybliżeniem, ale mimo to wyraźnie zaznacza się liniowa strefa wystąpień takiej mineralizacji: od Jedliny Zdrój, przez Kolce, Jawornik do Srebrnej Góry. W strefie tej znajdują się również opisywane punkty radonowe w Głuszycach. Wydaje się zatem, że na podwyższone stężenia radonu w badanej lokalizacji mogą wpływać

zarówno bliskość strefy tektonicznej ograniczającej kompleks sowiogórski, jak i strefy mineralizacji uranowej związane z uskokami.

Fig.4. 62 Lokalizacje wystąpień stref mineralizacji uranowej w piaskowcach i zlepieńcach kambru (żółte punkty – Solecki i in., 2011, objaśnienia poniżej) na tle mapy tektonicznej Sudetów i bloku przedsudeckiego (Cymerman, 2010). Niebieskim kolorem zaznaczono lokalizację punktów radonowych GL.

1 – Dziećmorowice; 2 – hałda i wyrobisko szybu Krakus; 3 – Kozice; 4 – Park Rusinowa; 5 – Rusinowa; 6 – Jedlina Zdrój; 7 – KWK Julia upadowa Zygmunt; 8 – Jawornik; 9 – Głuszyca; 10 – Kolce; 11 – Kolce/Siemnica; 12 – Sierpnica; 13 – upadowa Kazimierz Sokolec; 14 – Sokolec; 15 – Ludwikowice Kłodzkie; 16 – Jugów; 17 – Pieszyce; 18 – Srebrna Góra

4.3.2 Książnica

Pomiary wykonane zostały na czterech punktach: punkt Ks1_Rn odpowiada sondowaniu MT Ks38, punkt Ks2_Rn odpowiada sondowaniu K236, punkt Ks3_Rn odpowiada sondowaniu Ks19 a punkt Ks4_Rn sondowaniu Ks14. Lokalizacja prac względem profilu magnetotellurycznego została przedstawiona na Fig.4. 63. Współrzędne oraz wyniki pomiarów zebrane zostały w Tab.4. 4.

	X [m]	Y [m]	²²² Rn _{avg} [kBq/m ³]	222 Rn _{min} [kBq/m ³]	222 Rn _{max} [kBq/m ³]
KS1_Rn	331187,09	331362,25	73,3	64,2	79,4
KS2_Rn	331007,11	331312,86	69,8	66,2	73,4
KS3_Rn	330055,88	330998,49	98,4	90,2	112,0
KS4_Rn	329588,62	3303818,91	14,0	11,3	19,0

Tab.4. 4 Lokalizacja oraz wyniki pomiarów stężenia ²²²Rn w powietrzu glebowym na profilu Książnica

Fig.4. 63 Lokalizacja pomiarów stężenia radonu względem wyników magnetotellurycznych na profilu 1-KS-18. Czerwona skala pokazuje wartości maksymalne, średnie i minimalne stężenia radonu (Tab. 4.4).

Profil sejsmiczny objął południową część profilu magnetotellurycznego (na S od wzniesienia) – w części tej wykonano dwa pomiary stężenia radonu (Fig.4. 64). Profil gamma-spektrometryczny objął natomiast część północną profilu MT (na północ od Wzgórz Kiełczyńskich) i tu też wykonano dwa pomiary stężenia radonu (Fig.4. 65).

Punkt KS4_Rn odróżnia się od pozostałych punktów znacznie niższą wartością średnią stężenia radonu. Punkt ten pomierzono w czwartorzędowych osadach przykrywających gnejsy sowiogórskie. Gnejsy te charakteryzują się dość niskim i bardzo mało zróżnicowanym potencjałem radonowym (Wołkowicz, 2007). Wartość średniej arytmetycznej zbioru mierzonego przez Wołkowicza (2007) wynosi 11,49 kBq/m³, co z grubsza odpowiada wartości uzyskanej w punkcie KS4_Rn.

Kolejny punkt – KS3_Rn – pomierzony został również w obrębie gnejsów sowiogórskich, ale nad strefą obniżonych oporności (Fig.4. 63) a także na krawędzi strefy uskokowej wyznaczonej metodą sejsmiczną (Fig.4. 64). Kilkukrotnie wyższa wartość stężenia radonu w tym punkcie w porównaniu z punktem KS4_Rn może zatem być nie tylko poświadczeniem obecności strefy tektonicznej, ale również wskazywać na jej aktywność.

Fig.4. 64 Lokalizacja pomiarów stężenia radonu względem przekroju otrzymanego w wyniku interpretacji danych sejsmicznych na profilu Książnica.

Dwa pozostałe punkty KS1_Rn i KS2_Rn znajdują się już w obrębie masywu serpentynitowego Gogołów-Jordanów, na północnym stoku Gór Kiełczyńskich. Stężenia radonu zarejestrowane na tych dwóch punktach są podobne, a zarazem dość wysokie – można powiedzieć, że zaskakująco wysokie jak na podłoże zbudowane ze skał ultrazasadowych (Maciejewski, 1963). Wg. Maciejewskiego w serpentynitach tych występując kwaśne żyły

lamprofirowe oraz liczne strefy spękań, brekcji. Biorąc dodatkowo pod uwagę fakt, że wg. interpretacji profilu magnetotellurycznego znajdujemy się nad strefą obniżonych oporności, a intepretowaną jako strefę przejściową pomiędzy serpentynitem Gór Kiełczyńskich a granitami masywu Strzegom-Sobótka, to podwyższone stężenia radonu są wytłumaczalne, aczkolwiek nie można udzielić jednoznacznej odpowiedzi, który z czynników jest źródłem takiego podwyższenia.

Fig.4. 65 Lokalizacja pomiarów stężenia radonu względem wyników gamma-spektrometrycznych na profilu Książnica

4.4 Podsumowanie i wnioski

Badaniom spektrometrycznym poddano 13 lokalizacji, z czego w jednej z nich (Spalona) wykonano 10 profili, a w pozostałych po jednym profilu. Tylko w przypadku rejonu <u>Spalona</u> nie bazowano na wcześniej wykonanych pomiarach sejsmicznych czy magnetotellurycznych. Mimo to, w wyniku przeprowadzonych pomiarów udało się ustalić, że lineamenty morfologiczne wyznaczone na podstawie analizy zdjęcia LIDAR są uskokami założonymi w podłożu metamorficznym. Pomiary wykazały obecność mineralizacji hydrotermalnej, czego potwierdzeniem było odnalezienie wystąpień żył kwarcowych.

Pozostałe profile zostały wyznaczone w oparciu o interpretację wyników badań sejsmicznych bądź magnetotellurycznych. Tylko w przypadku czterech profili (Głuszyca, Książnica, Srebrna Góra, Złotoryja) badania gamma-spektrometryczne nie potwierdziły istnienia uskoku/strefy tektonicznej wyznaczonej innymi metodami geofizycznymi. W przypadku profili <u>Książnica</u> i <u>Srebrna Góra</u> zarejestrowane zmiany w poziomie radioaktywności wynikają ze zmian litologii.

Najciekawsze wyniki uzyskano dla profili <u>Wierzchosławice</u> i <u>Nagórnik</u>. Są to profile zlokalizowane nad tym samym wydzieleniem litologicznym – zieleńcami i łupkami zieleńcowymi. Skały te charakteryzują się znikomą zawartością potasu, co znajduje odbicie w wynikach pomiarów gamma-spektrometrycznych. Mimo to, udało się potwierdzić istnienie uskoków czy stref nieciągłości tektonicznych ponad strefami obniżonej oporności.

Na profilach: <u>Brzozowie</u>, <u>Niedamirów</u>, <u>Potworów</u>, <u>Stara Łomnica</u>, <u>Bystrzyca Kłodzka</u> i <u>Różanka-Międzylesie</u> potwierdzono istnienie uskoków wyznaczonych przy użyciu sejsmiki. W przypadku profilu Bystrzyca Kłodzka wyniki gamma-spektrometryczne dodatkowo wskazały na możliwość istnienia mineralizacji hydrotermalnej (podobnie jak w Spalonej). Na profilu Stara Łomnica potwierdzono nieciągłość wyznaczoną metodą sejsmiczną, ale nie udało się potwierdzić nieciągłości wynikającej z metody magnetotellurycznej.

4.5 Literatura

Cieśla E., Duda S., Maciołek J., 1979 – Dokumentacja badań geofizycznych. Temat: Poszukiwanie rud toru i pierwiastków ziem rzadkich w zachodniej części metamorfiku izerskiego. Rejon: Markocice – Opolno Zdrój, 1977 rok. *Narodowe Archiwum Geologiczne PIG-PIB, Warszawa (Inw. 2208)*

Clark S.P., 1966 – Handbook of Physical Constants. Geol. Soc. Am. Memoir. 97, Nowy Jork

Cymerman Z., 2010 – Mapa tektoniczna Sudetów i bloku przedsudeckiego. Wydanie II, zmienione. *Państwowy Instytut Geologiczny, Warszawa*

Cymerman Z., Mastalerz K., 1994 – Szczegółowa mapa geologiczna Sudetów, arkusz Marciszów. *Państwowy Instytut Geologiczny, Warszawa*

Dziurowicz M., Malczewski D., Żaba, J., 2017 – ₂₂₂Rn and ₂₂₀Rn concentrations in selected soils developed on the igneous rocks of the Kaczawa Mountains (Sudetes, Poland). *Acta Montanistica Slovaca*, **22:** 328-245

Dżaluk A., Malczewski D., Żaba J., Dziurowicz M., 2015 – Laboratory measurements of natural radioactivity in selected igneous rocks of the Opava Mountains region. *Geology, Geophysics & Environment.* **41**, 1: 73-74

Fistek J., Gierwielaniec J., 1957 – Szczegółowa mapa geologiczna Sudetów, arkusz M33-70Aa Bystrzyca Nowa. *Instytut Geologiczny, Warszawa*

Gierwielaniec J., 1955 – Szczegółowa mapa geologiczna Sudetów, arkusz M33-57Cb Kudowa Zdrój. *Instytut Geologiczny, Warszawa*

Gilmore G.R., 2008 – Practical gamma-ray spectrometry. 2nd edition. John Wiley&Sons Ltd.

Grocholski W., 1956 – Szczegółowa mapa geologiczna Sudetów, arkusz M33-45Dd Walim. *Instytut Geologiczny, Warszawa*

IAEA, 1989 – Construction and use of calibration facilities for radiometric field equipment. *Technical Report Series*, **309**, *IAEA*, *Wiedeń*

IAEA, 2003 – Guidelines for radioelement mapping using gamma ray spectrometry data. International Atomic Energy Agency, July 2003. <u>https://www-pub.iaea.org/mtcd/publications/</u>pdf/te_1363_web.pdf

Ihnatowicz A., zespół, 2016 – Kompleksowa, geofizyczno-geologiczna interpretacja nowego zdjęcia całkowitego pola magnetycznego Ziemi na obszarze Sudetów i ich przedpola. *Narodowe Archiwum Geologiczne PIG-PIB, Warszawa (Inw. 4783/2016; 4784/2016)*

Isajenko K., Piotrowska B., Fujak M., Kadraś M., 2012 – Atlas radiologiczny Polski, 2011. *Biblioteka Monitoringu Środowiska, Warszawa*

Jagielak J., Biernacka M., Henschke J., Sosińska A., 1998 – Radiation atlas of Poland, 1997. Biblioteka Monitoringu Środowiska, Warszawa

Jerzmański J., Walczak-Augustyniak M., 1993 – Szczegółowa mapa geologiczna Sudetów, arkusz Krotoszyce. *Państwowy Instytut Geologiczny, Warszawa*

Kemski J., Klingel R., Schneiders H., Siehl A., Wiegand J., 1992 – Geological Structure and Geochemistry Controlling Radon in Soil Gas. *Radiation Protection Dosimetry*, **45**, 1-4: 235-239 Kozdrój W., 1990 – Szczegółowa mapa geologiczna Sudetów, arkusz Poręba. *Państwowy* Instytut Geologiczny, Warszawa

Maciejewski S., 1963 – Uwagi o serpentynitach Gór Kiełczyńskich na Dolnym Śląsku. *Kwartalnik Geologiczny* 7(1): 1-16

Malczewski D., Żaba J., $2017 - {}_{222}$ Rn i ${}_{220}$ Rn concentrations in soil gas of the Izera Massif (Sudetes, Poland) as a function of sampling depth. *Geological Quarterly*, **61**, 4: 877-886

Miecznik J., Sałdan M., Strzelecki R., 1980 – Uranowość utworów kredowych Sudetów". *Kwartalnik Geologiczny*, **24**, 3: 651-662

Muszer A., Maliszewski M., Firlit G., 2015 – Wykorzystanie metody radiometrycznej w poszukiwaniu ciał ilmenitowych w masywie Ślęży (Dolny Śląsk). *Górnictwo Odkrywkowe*, **56**, 2: 137-145

Oberc J., Badura J., Przybylski B., Jamrozik L., 1994 – Szczegółowa mapa geologiczna Sudetów, arkusz Bardo Śląskie. *Państwowy Instytut Geologiczny, Warszawa*

Sawicki L., 1962 – Szczegółowa mapa geologiczna Sudetów, arkusz M33-70 Cb Międzylesie. *Instytut Geologiczny, Warszawa*

Solecki A.T., 1997 – Radioaktywność środowiska geologicznego. *Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław*

Solecki A.T., 2013 – Radioaktywność surowców skalnych – nowe metody dokumentowania. *POLTEGOR-Instytut, Instytut Górnictwa Odkrywkowego, Wrocław*

Solecki A.T., 2000 – Anomalie radiometryczne środkowej części obszaru przedsudeckiego i ich związek ze środowiskiem geologicznym. *Wydawnictwo Uniwersytetu Wrocławskiego*.

Solecki A.T., Puchala R., Tchorz D.E., 2007 – Radon and its daughters activities in magmatic area of the Karkonosze Granite and adjacent volcano-sedimentary Intrasudetic Basin. *Annals of Geophysics*, **50**, 4: 579-585

Solecki A., Śliwiński W., Wojciechowska I., Tchorz-Trzeciakiewicz D., Syryczyński P., Sadowska M., Makowski B., 2011 – Ocena możliwości występowania mineralizacji uranowej w Polsce na podstawie wyników prac geologiczno-poszukiwawczych. *Przegląd Geologiczny* 59, 2:98-110 Strzelecki R., Wołkowicz S., Szewczyk J., Lewandowski P., 1994 – Radioecological Maps of Poland. *Państwowy Instytut Geologiczny, Warszawa*

Swakoń J., Kozak K., Paszkowski M., Gradziński R., Łoskiewicz J., Mazur J., Janik M.,
Bogacz J., Horwacik T., Olko P., 2005 – Radon concentration in soil gas around local
disjunctive tectonic zones in the Krakow area. *Journal of Environmental Radioactivity*,
78:137-149

Szałamacha M., 1958 – Szczegółowa mapa geologiczna Sudetów, arkusz M33-44Dc Czepiel. *Instytut Geologiczny, Warszawa*

Szegvary T., Leuenberger M.C., Conen F., 2007 – Predicting terrestrial ²²²Rn flux using gamma dose rate as a proxy. *Atmos. Chem. Phys.*, **7**:2789-2795

Šalek O., Matolin M., Tábořík P., Štěpančíková P, 2014 – Detailed gamma-spectrometric analysis of natural radionuclides of K, U, Th on the Sudetic Marginal Fault. *Zprávy o geologických výzkumech w roce 2014/D – Mineralogie, petrologie a geochemie*: 99-102

Trepka S., Gawroński O., 1957 – Szczegółowa mapa geologiczna Sudetów, arkusz M33-58Ab Ostroszowice. *Instytut Geologiczny, Warszawa*

Walczak-Augustyniak M., Szałamacha J., 1978 – Szczegółowa mapa geologiczna Sudetów, arkusz Mościsko. *Instytut Geologiczny, Warszawa*

Wołkowicz S., 2007 – Potencjał radonowy Sudetów wraz z wyznaczeniem obszarów występowania potencjalnie leczniczych wód radonowych. *Państwowy Instytut Geologiczny, Warszawa*

Wójcik L., 1957 – Szczegółowa mapa geologiczna Sudetów, arkusz M33-58Cc Polanica Zdrój. *Instytut Geologiczny, Warszawa*

4.6 Katalogi danych spektrometrycznych

	Współrzędne geog	raficzne ukł. 1992		Stężenie	e]	Moc dav	vki (nGy	/h)	Stężenie a	ktywnoś	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	Κ	eU	eTh	K	eU	eTh	
ZL01	362355,53	291202,74	1,5	2,1	8,3	53,3	19,6	11,9	20,7	470	26	34	0,41
ZL02	362364,60	291206,96	1,5	2,5	8,2	55,5	19,6	14,2	20,5	470	31	33	0,43
ZL03	362373,66	291211,18	1,4	2,3	8,0	52,8	18,3	13,1	20,0	438	28	32	0,40
ZL04	362382,73	291215,41	1,8	2,6	8,5	60,3	23,5	14,8	21,2	563	32	35	0,47
ZL05	362391,79	291219,63	1,2	1,7	7,4	44,9	15,7	9,6	18,5	376	21	30	0,35
ZL06	362400,85	291223,85	1,0	1,5	6,5	38,3	13,1	8,5	16,2	313	19	26	0,30
ZL07	362409,92	291228,08	1,7	2,0	8,3	55,2	22,2	11,4	20,7	532	25	34	0,43
ZL08	362418,98	291232,30	1,9	2,2	8,7	60,0	24,8	12,5	21,7	595	27	35	0,47
ZL09	362428,05	291236,52	2,0	2,3	9,8	65,3	26,2	13,1	24,4	626	28	40	0,50
ZL10	362437,11	291240,75	2,0	2,3	10,1	65,5	26,2	13,1	25,2	626	28	41	0,51
ZL11	362446,08	291245,18	1,9	2,2	9,2	61,2	24,8	12,5	22,9	595	27	37	0,48
ZL12	362455,04	291249,61	1,9	2,2	9,3	62,3	24,8	12,5	23,2	595	27	38	0,48
ZL13	362464,01	291254,04	1,8	2,4	9,2	61,3	23,5	13,6	22,9	563	30	37	0,47
ZL14	362472,97	291258,47	1,9	1,9	10,1	62,8	24,8	10,8	25,2	595	23	41	0,48
ZL15	362481,94	291262,90	1,8	1,9	9,8	60,8	23,5	10,8	24,4	563	23	40	0,46
ZL16	362490,90	291267,33	1,8	2,0	8,9	58,7	23,5	11,4	22,2	563	25	36	0,45
ZL17	362499,87	291271,76	1,5	2,0	9,4	56,1	19,6	11,4	23,4	470	25	38	0,43
ZL18	362508,83	291276,19	1,7	2,4	10,1	62,7	22,2	13,6	25,2	532	30	41	0,48
ZL19	362517,80	291280,62	1,9	2,2	10,0	63,6	24,8	12,5	24,9	595	27	41	0,49
ZL20	362526,76	291285,05	1,7	1,9	10,2	59,4	22,2	10,8	25,4	532	23	41	0,46
ZL21	362535,94	291289,02	1,7	2,1	9,2	58,7	22,2	11,9	22,9	532	26	37	0,45
ZL22	362545,12	291292,98	1,7	1,9	8,3	54,8	22,2	10,8	20,7	532	23	34	0,42
ZL23	362554,30	291296,94	1,7	1,9	8,4	54,9	22,2	10,8	20,9	532	23	34	0,43
ZL24	362563,48	291300,91	1,8	1,8	7,7	54,1	23,5	10,2	19,2	563	22	31	0,42
ZL25	362572,66	291304,89	1,9	1,7	8,0	55,8	24,8	9,6	20,0	595	21	32	0,43
ZL26	362581,72	291309,12	1,9	2,1	8,6	59,5	24,8	11,9	21,4	595	26	35	0,46
ZL27	362590,78	291313,35	1,8	1,9	8,2	55,7	23,5	10,8	20,5	563	23	33	0,43
ZL28	362599,84	291317,58	1,7	2,1	8,0	54,8	22,2	11,9	20,0	532	26	32	0,43
ZL29	362608,90	291321,81	1,7	2,2	8,3	56,1	22,2	12,5	20,7	532	27	34	0,44
ZL30	362617,97	291326,04	1,7	2,1	7,7	54,9	22,2	11,9	19,2	532	26	31	0,42
ZL31	362627,05	291330,22	1,7	2,3	7,6	55,3	22,2	13,1	19,0	532	28	31	0,43

 Tab.4. 5
 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Złotoryja

ZL32	362636,13	291334,41	1,7	2,0	7,9	54,7	22,2	11,4	19,7	532	25	32	0,42
ZL33	362645,21	291338,59	1,7	2,1	7,9	55,6	22,2	11,9	19,7	532	26	32	0,42
ZL34	362654,29	291342,77	1,7	2,2	8,6	57,2	22,2	12,5	21,4	532	27	35	0,44
ZL35	362663,38	291346,96	1,7	2,2	8,2	56,3	22,2	12,5	20,5	532	27	33	0,43
ZL36	362672,46	291351,14	1,7	2,1	8,1	55,6	22,2	11,9	20,2	532	26	33	0,43
ZL37	362681,54	291355,33	1,6	2,2	7,7	53,8	20,9	12,5	19,2	501	27	31	0,41
ZL38	362690,62	291359,51	1,7	2,2	8,4	56,8	22,2	12,5	20,9	532	27	34	0,44
ZL39	362699,71	291363,69	1,8	2,4	8,7	60,4	23,5	13,6	21,7	563	30	35	0,46
ZL40	362708,79	291367,88	1,8	2,3	7,6	56,2	23,5	13,1	19,0	563	28	31	0,44

Tab.4. 6 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Wierzchosławice

	Współrzędne geog	graficzne ukł. 1992		Stężenie		Mo	oc daw	ki (nGy/	h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	Κ	eU	eTh	K	eU	eTh	
W01	341642,72	294093,70	0,39	1,37	3,72	22,09	5,1	7,8	9,3	122	17	15	0,17
W02	341644,86	294103,47	0,41	1,55	1,38	17,61	5,4	8,8	3,4	128	19	6	0,13
W03	341647,00	294113,24	0,38	1,33	2,76	19,36	5,0	7,5	6,9	119	16	11	0,15
W04	341649,14	294123,01	0,38	1,18	1,85	16,24	5,0	6,7	4,6	119	15	8	0,13
W05	341651,28	294132,78	0,29	1,26	1,26	14,04	3,8	7,2	3,1	91	16	5	0,11
W06	341653,42	294142,54	0,32	1,25	1,75	15,62	4,2	7,1	4,4	100	15	7	0,12
W07	341655,56	294152,31	0,39	1,41	2,13	18,46	5,1	8,0	5,3	122	17	9	0,14
W08	341657,70	294162,08	0,46	1,13	2,06	17,60	6,0	6,4	5,1	144	14	8	0,14
W09	341659,84	294171,85	0,33	1,73	0,89	16,29	4,3	9,8	2,2	103	21	4	0,12
W10	341661,98	294181,62	0,42	1,02	1,36	14,66	5,5	5,8	3,4	131	13	6	0,11
W11	341664,11	294191,39	0,45	1,13	1,55	16,11	5,9	6,4	3,9	141	14	6	0,12
W12	341666,25	294201,16	0,39	1,38	2,35	18,76	5,1	7,8	5,9	122	17	10	0,15
W13	341668,39	294210,92	0,38	1,31	2,31	18,08	5,0	7,4	5,8	119	16	9	0,14
W14	341670,53	294220,69	0,44	1,01	2,77	18,44	5,8	5,7	6,9	138	12	11	0,14
W15	341672,67	294230,46	0,43	0,88	3,42	19,09	5,6	5,0	8,5	135	11	14	0,15
W16	341674,81	294240,23	0,49	1,41	2,93	21,68	6,4	8,0	7,3	153	17	12	0,17
W17	341676,95	294250,00	0,43	1,49	3,05	21,69	5,6	8,5	7,6	135	18	12	0,17
W18	341679,09	294259,77	0,40	1,78	3,71	24,54	5,2	10,1	9,3	125	22	15	0,19
W19	341681,23	294269,53	0,51	1,33	2,51	20,48	6,7	7,5	6,3	160	16	10	0,16
W20	341683,37	294279,30	0,48	0,92	2,82	18,59	6,3	5,2	7,0	150	11	11	0,15
W21	341685,51	294289,07	0,33	1,60	2,97	20,82	4,3	9,1	7,4	103	20	12	0,16
W22	341687,65	294298,84	0,54	1,11	2,16	18,77	7,1	6,3	5,4	169	14	9	0,15
W23	341689,79	294308,61	0,50	1,12	2,68	19,57	6,5	6,4	6,7	157	14	11	0,15
W24	341691,93	294318,38	0,43	1,01	2,60	17,77	5,6	5,7	6,5	135	12	11	0,14

W25	341694,07	294328,15	0,36	1,62	3,08	21,61	4,7	9,2	7,7	113	20	13	0,17
W26	341696,20	294337,91	0,34	1,41	3,31	20,66	4,4	8,0	8,3	106	17	13	0,16
W27	341698,34	294347,68	0,26	1,98	2,60	21,07	3,4	11,2	6,5	81	24	11	0,16
W28	341700,48	294357,45	0,46	1,78	4,40	27,08	6,0	10,1	11,0	144	22	18	0,21
W29	341702,62	294367,22	0,41	1,77	3,88	25,10	5,4	10,0	9,7	128	22	16	0,19
W30	341704,76	294376,99	0,48	1,72	2,47	22,21	6,3	9,8	6,2	150	21	10	0,17
W31	341706,90	294386,76	0,42	1,53	1,87	18,91	5,5	8,7	4,7	131	19	8	0,14
W32	341709,04	294396,52	0,37	1,33	2,50	18,60	4,8	7,5	6,2	116	16	10	0,14
W33	341711,18	294406,29	0,47	0,82	2,55	17,24	6,1	4,7	6,4	147	10	10	0,13
W34	341713,32	294416,06	0,40	1,58	2,93	21,51	5,2	9,0	7,3	125	20	12	0,17
W35	341715,46	294425,83	0,50	1,16	2,38	19,08	6,5	6,6	5,9	157	14	10	0,15
W36	341717,60	294435,60	0,52	1,52	3,34	23,81	6,8	8,6	8,3	163	19	14	0,18
W37	341719,74	294445,37	0,48	1,53	4,14	25,20	6,3	8,7	10,3	150	19	17	0,20
W38	341721,88	294455,14	0,39	2,00	3,09	24,11	5,1	11,4	7,7	122	25	13	0,19
W39	341724,02	294464,90	0,39	1,66	3,57	23,45	5,1	9,4	8,9	122	21	14	0,18
W40	341726,16	294474,67	0,57	1,48	2,50	22,11	7,5	8,4	6,2	178	18	10	0,17
W41	341728,29	294484,44	0,50	1,45	2,56	21,12	6,5	8,2	6,4	157	18	10	0,16
W42	341730,43	294494,21	0,31	1,26	3,35	19,59	4,1	7,2	8,4	97	16	14	0,15
W43	341732,57	294503,98	0,47	1,11	2,22	17,97	6,1	6,3	5,5	147	14	9	0,14
W44	341734,71	294513,75	0,43	1,01	3,41	19,84	5,6	5,7	8,5	135	12	14	0,16

Tab.4. 7 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Nagórnik

	Współrzędne geog	graficzne ukł. 1992		Stężenie		Mo	oc dawl	ki (nGy/	h)	Stężenie	aktywnośc	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
NG01	339314,73	297384,96	0,20	1,81	2,87	20,09	2,6	10,3	7,2	63	22	12	0,15
NG02	339321,44	297392,37	0,27	1,45	2,83	18,74	3,5	8,2	7,1	85	18	11	0,15
NG03	339328,15	297399,78	0,16	1,49	2,27	16,21	2,1	8,5	5,7	50	18	9	0,12
NG04	339334,86	297407,20	0,24	1,37	3,88	20,51	3,1	7,8	9,7	75	17	16	0,16
NG05	339341,57	297414,61	0,28	1,53	3,09	20,00	3,7	8,7	7,7	88	19	13	0,15
NG06	339348,28	297422,03	0,24	1,48	3,79	20,96	3,1	8,4	9,5	75	18	15	0,16
NG07	339354,99	297429,44	0,38	1,67	3,43	23,06	5,0	9,5	8,6	119	21	14	0,18
NG08	339361,70	297436,85	0,30	1,71	3,50	22,41	3,9	9,7	8,7	94	21	14	0,17
NG09	339368,41	297444,27	0,43	1,65	2,89	22,23	5,6	9,4	7,2	135	20	12	0,17
NG10	339375,12	297451,68	0,46	1,57	3,65	23,96	6,0	8,9	9,1	144	19	15	0,19
NG11	339381,84	297459,10	0,39	1,89	3,03	23,42	5,1	10,7	7,6	122	23	12	0,18
NG12	339388,55	297466,51	0,51	1,84	4,17	27,59	6,7	10,4	10,4	160	23	17	0,21
NG13	339395,26	297473,92	0,43	1,32	2,76	20,02	5,6	7,5	6,9	135	16	11	0,16

NG14	339401,97	297481,34	0,56	1,69	3,45	25,45	7,3	9,6	8,6	175	21	14	0,20
NG15	339408,68	297488,75	0,59	1,18	3,22	22,47	7,7	6,7	8,0	185	15	13	0,18
NG16	339415,39	297496,17	0,42	1,68	3,02	22,58	5,5	9,5	7,5	131	21	12	0,17
NG17	339422,10	297503,58	0,46	1,51	3,62	23,55	6,0	8,6	9,0	144	19	15	0,18
NG18	339428,81	297510,99	0,35	1,73	3,34	22,72	4,6	9,8	8,3	110	21	14	0,18
NG19	339435,52	297518,41	0,52	1,32	2,55	20,61	6,8	7,5	6,4	163	16	10	0,16
NG20	339442,23	297525,82	0,27	0,77	1,34	11,33	3,5	4,4	3,3	85	10	5	0,09
NG21	339448,94	297533,24	0,31	0,85	2,35	14,66	4,1	4,8	5,9	97	10	10	0,12
NG22	339455,65	297540,65	0,24	0,51	2,22	11,62	3,1	2,9	5,5	75	6	9	0,09
NG23	339462,36	297548,06	0,00	0,27	0,00	1,53	0,0	1,5	0,0	0	3	0	0,01
NG24	339469,07	297555,48	0,05	0,25	0,00	2,07	0,7	1,4	0,0	16	3	0	0,02
NG25	339475,78	297562,89	0,05	0,47	0,27	4,01	0,7	2,7	0,7	16	6	1	0,03
NG26	339482,49	297570,31	0,01	0,40	0,42	3,45	0,1	2,3	1,0	3	5	2	0,03
NG27	339489,20	297577,72	0,13	0,51	0,29	5,38	1,7	2,9	0,7	41	6	1	0,04
NG28	339495,91	297585,13	0,22	1,18	1,71	13,84	2,9	6,7	4,3	69	15	7	0,11
NG29	339502,63	297592,55	0,22	0,49	0,50	6,95	2,9	2,8	1,2	69	6	2	0,05
NG30	339509,34	297599,96	0,08	0,51	0,01	3,94	1,0	2,9	0,0	25	6	0	0,03

Tab.4. 8 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Niedamirów

	Współrzędne geog	graficzne ukł. 1992		Stężenie	;	M	oc dawk	i (nGy/h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
ND01	318742,09	278716,70	0,45	2,05	3,59	26,48	5,9	11,6	9,0	141	25	15	0,20
ND02	318746,81	278725,51	0,52	0,77	3,36	19,60	6,8	4,4	8,4	163	10	14	0,15
ND03	318751,53	278734,33	0,52	1,26	2,73	20,77	6,8	7,2	6,8	163	16	11	0,16
ND04	318755,70	278743,40	0,42	1,66	3,43	23,49	5,5	9,4	8,6	131	21	14	0,18
ND05	318759,32	278752,72	0,46	1,83	2,42	22,40	6,0	10,4	6,0	144	23	10	0,17
ND06	318762,94	278762,04	0,57	1,21	2,52	20,64	7,5	6,9	6,3	178	15	10	0,16
ND07	318766,56	278771,37	0,63	1,53	3,41	25,42	8,2	8,7	8,5	197	19	14	0,20
ND08	318770,18	278780,69	0,57	1,74	4,65	28,96	7,5	9,9	11,6	178	21	19	0,23
ND09	318773,79	278790,01	0,60	1,89	3,78	27,97	7,8	10,7	9,4	188	23	15	0,22
ND10	318777,57	278799,27	0,70	1,72	3,93	28,67	9,2	9,8	9,8	219	21	16	0,22
ND11	318781,53	278808,45	0,71	1,44	4,04	27,48	9,3	8,2	10,1	222	18	16	0,22
ND12	318785,49	278817,63	0,62	2,14	3,79	29,67	8,1	12,1	9,5	194	26	15	0,23
ND13	318789,45	278826,82	0,74	1,52	4,70	29,98	9,7	8,6	11,7	232	19	19	0,24
ND14	318793,06	278836,12	0,74	1,81	5,01	32,47	9,7	10,3	12,5	232	22	20	0,25
ND15	318795,85	278845,73	0,77	2,46	4,96	36,45	10,1	14,0	12,4	241	30	20	0,28
ND16	318798,26	278855,39	0,69	2,38	4,71	34,29	9,0	13,5	11,7	216	29	19	0,27

ND17	318798,66	278865,38	0,70	2,16	5,92	36,17	9,2	12,3	14,8	219	27	24	0,28
ND18	318799,06	278875,38	0,84	2,17	4,84	35,35	11,0	12,3	12,1	263	27	20	0,28
ND19	318799,46	278885,37	0,62	1,65	5,06	30,03	8,1	9,4	12,6	194	20	21	0,24
ND20	318800,01	278895,35	0,56	2,29	3,16	28,15	7,3	13,0	7,9	175	28	13	0,22
ND21	318800,58	278905,34	0,68	1,93	5,24	32,88	8,9	11,0	13,1	213	24	21	0,26
ND22	318801,16	278915,32	0,53	1,85	4,82	29,49	6,9	10,5	12,0	166	23	20	0,23
ND23	318802,78	278925,10	0,69	2,35	4,59	33,84	9,0	13,3	11,4	216	29	19	0,26
ND24	318805,94	278934,59	0,73	2,15	5,72	36,07	9,5	12,2	14,3	228	27	23	0,28
ND25	318809,10	278944,08	0,91	1,54	4,35	31,46	11,9	8,7	10,8	285	19	18	0,25
ND26	318812,27	278953,56	0,87	2,20	4,44	34,93	11,4	12,5	11,1	272	27	18	0,27
ND27	318814,81	278963,16	0,75	2,11	5,56	35,59	9,8	12,0	13,9	235	26	23	0,28
ND28	318815,18	278973,16	0,80	2,08	5,23	35,33	10,5	11,8	13,0	250	26	21	0,28
ND29	318815,54	278983,15	0,63	2,46	3,75	31,48	8,2	14,0	9,4	197	30	15	0,24
ND30	318815,90	278993,14	0,70	2,09	4,23	31,60	9,2	11,9	10,5	219	26	17	0,24
ND31	318817,63	279002,85	0,77	2,42	4,92	36,04	10,1	13,7	12,3	241	30	20	0,28
ND32	318821,29	279012,16	0,80	2,47	4,44	35,51	10,5	14,0	11,1	250	31	18	0,28
ND33	318824,96	279021,46	0,75	2,75	4,45	36,43	9,8	15,6	11,1	235	34	18	0,28
ND34	318828,62	279030,76	0,67	2,90	4,45	36,32	8,8	16,5	11,1	210	36	18	0,28
ND35	318832,29	279040,07	0,70	2,77	3,20	32,89	9,2	15,7	8,0	219	34	13	0,25
ND36	318835,95	279049,37	0,72	2,36	3,26	30,90	9,4	13,4	8,1	225	29	13	0,24
ND37	318840,05	279058,49	0,72	1,98	4,16	31,04	9,4	11,2	10,4	225	24	17	0,24
ND38	318844,25	279067,57	0,66	1,79	4,93	31,04	8,6	10,2	12,3	207	22	20	0,24
ND39	318848,44	279076,65	0,82	2,42	4,81	36,42	10,7	13,7	12,0	257	30	20	0,28

Tab.4. 9 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Głuszyca

	Współrzędne geog	graficzne ukł. 1992		Stężenie K [%] eU [ppm] eTh 1,3 1,7 1 1,4 1,8 1 1,4 1,8 1 1,5 1,8 1 1,6 2,1 1 1,4 1,6 1 1,5 1,8 1		N	loc dawl	ki (nGy/	h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
GL01	315764,24	315235,01	1,3	1,7	7,9	48,1	17,0	9,6	19,7	407	21	32	0,37
GL02	315769,50	315243,51	1,4	1,8	7,3	47,1	18,3	10,2	18,2	438	22	30	0,37
GL03	315774,76	315252,01	1,4	1,8	7,1	46,7	18,3	10,2	17,7	438	22	29	0,36
GL04	315780,03	315260,51	1,5	1,8	7,3	48,8	19,6	10,2	18,2	470	22	30	0,38
GL05	315785,29	315269,02	1,6	2,1	7,1	50,8	20,9	11,9	17,7	501	26	29	0,40
GL06	315790,55	315277,52	1,4	1,6	7,8	48,4	18,3	9,1	19,5	438	20	32	0,37
GL07	315795,00	315286,47	1,5	1,8	8,6	53,2	19,6	10,2	21,4	470	22	35	0,41
GL08	315799,30	315295,50	1,7	1,6	9,6	57,1	22,2	9,1	23,9	532	20	39	0,44

GL09	315803,60	315304,52	1,8	2,0	9,4	59,7	23,5	11,4	23,4	563	25	38	0,46
GL10	315807,90	315313,55	1,9	2,0	11,3	66,6	24,8	11,4	28,2	595	25	46	0,51
GL11	315812,20	315322,58	2,0	2,3	9,5	64,5	26,2	13,1	23,7	626	28	39	0,50
GL12	315818,12	315330,64	2,0	2,3	9,7	63,3	26,2	13,1	24,2	626	28	39	0,50
GL13	315824,05	315338,69	2,0	2,3	8,9	62,8	26,2	13,1	22,2	626	28	36	0,48
GL14	315829,98	315346,74	2,1	2,1	8,0	61,2	27,5	11,9	20,0	657	26	32	0,47
GL15	315835,92	315354,79	2,2	1,8	8,8	62,2	28,8	10,2	21,9	689	22	36	0,48
GL16	315841,85	315362,84	1,7	1,8	7,6	53,0	22,2	10,2	19,0	532	22	31	0,41
GL17	315847,85	315370,84	1,9	1,9	7,0	53,4	24,8	10,8	17,5	595	23	28	0,42
GL18	315853,85	315378,84	1,7	1,7	7,4	52,0	22,2	9,6	18,5	532	21	30	0,40
GL19	315859,85	315386,84	1,6	1,9	7,4	51,2	20,9	10,8	18,5	501	23	30	0,40
GL20	315865,85	315394,84	1,8	2,0	6,8	51,9	23,5	11,4	17,0	563	25	28	0,41
GL21	315871,85	315402,84	1,6	1,9	7,2	50,5	20,9	10,8	18,0	501	23	29	0,39
GL22	315877,79	315410,88	1,6	2,3	7,0	51,5	20,9	13,1	17,5	501	28	28	0,40
GL23	315883,73	315418,93	1,5	2,1	7,0	50,4	19,6	11,9	17,5	470	26	28	0,39
GL24	315889,66	315426,98	1,5	2,0	6,6	47,6	19,6	11,4	16,5	470	25	27	0,37
GL25	315895,59	315435,03	1,5	2,0	7,0	49,5	19,6	11,4	17,5	470	25	28	0,38
GL26	315901,52	315443,08	1,5	2,1	6,2	48,1	19,6	11,9	15,5	470	26	25	0,37
GL27	315907,45	315451,13	1,5	2,1	6,1	48,0	19,6	11,9	15,2	470	26	25	0,37
GL28	315913,39	315459,18	1,5	1,9	6,6	47,2	19,6	10,8	16,5	470	23	27	0,37
GL29	315919,32	315467,23	1,5	2,1	6,3	47,7	19,6	11,9	15,7	470	26	26	0,37
GL30	315925,25	315475,28	1,4	2,2	6,7	47,8	18,3	12,5	16,7	438	27	27	0,37
GL31	315931,14	315483,28	1,3	2,2	7,0	47,8	17,0	12,5	17,5	407	27	28	0,37

Tab.4. 10 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Książnica

	Współrzędne geograficzne ukł. 1992		Stężenie			Moc dawki (nGy/h)				Stężenie aktywności (Bq/kg)			f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
KS1	331409,69	331446,07	1,00	3,47	6,31	48,60	13,1	19,7	15,7	313	43	26	0,38
KS2	331399,21	331439,81	0,92	3,32	6,56	47,20	12,0	18,8	16,4	288	41	27	0,37
KS3	331390,39	331437,34	0,96	3,23	6,05	45,91	12,6	18,3	15,1	300	40	25	0,36
KS4	331379,45	331435,02	0,83	3,98	4,98	45,70	10,9	22,6	12,4	260	49	20	0,35
KS5	331369,98	331428,51	0,83	3,70	5,43	45,44	10,9	21,0	13,5	260	46	22	0,35
KS6	331359,07	331425,19	1,04	3,57	6,15	49,22	13,6	20,3	15,3	326	44	25	0,38
KS7	331352,07	331421,65	0,85	3,68	7,78	51,43	11,1	20,9	19,4	266	45	32	0,40
KS8	331342,98	331416,92	1,00	3,13	8,40	51,78	13,1	17,8	20,9	313	39	34	0,40
KS9	331333,16	331414,35	1,05	2,54	7,79	47,64	13,7	14,4	19,4	329	31	32	0,37
KS10	331324,67	331412,10	0,87	3,97	7,37	52,33	11,4	22,5	18,4	272	49	30	0,40

KS11	331317,66	331408,63	0,91	3,53	10,12	57,20	11,9	20,0	25,2	285	44	41	0,45
KS12	331306,89	331404,61	0,86	4,36	7,52	54,81	11,2	24,7	18,8	269	54	31	0,42
KS13	331299,76	331401,42	0,75	3,56	8,65	52,16	9,8	20,2	21,6	235	44	35	0,40
KS14	331288,01	331400,13	0,83	3,69	7,89	51,53	10,9	20,9	19,7	260	46	32	0,40
KS15	331279,52	331397,67	0,98	3,13	7,57	49,43	12,8	17,8	18,9	307	39	31	0,38
KS16	331270,21	331393,07	0,93	3,56	8,01	52,35	12,2	20,2	20,0	291	44	33	0,41
KS17	331261,76	331389,41	1,02	3,40	8,15	52,87	13,3	19,3	20,3	319	42	33	0,41
KS18	331252,61	331386,72	1,20	3,56	7,58	54,87	15,7	20,2	18,9	376	44	31	0,43
KS19	331242,12	331384,26	0,87	3,83	7,71	52,38	11,4	21,7	19,2	272	47	31	0,40
KS20	331232,34	331380,49	0,97	3,56	7,84	52,54	12,7	20,2	19,6	304	44	32	0,41
KS21	331221,91	331376,35	1,07	3,18	7,40	51,29	14,0	18,0	18,5	335	39	30	0,39
KS22	331211,68	331372,77	0,96	3,71	7,83	53,13	12,6	21,1	19,5	300	46	32	0,41
KS23	331202,65	331369,73	1,08	2,95	6,81	47,87	14,1	16,7	17,0	338	36	28	0,37
KS24	331193,63	331366,69	1,01	3,91	7,05	52,99	13,2	22,2	17,6	316	48	29	0,41
KS25	331186,29	331366,59	1,04	3,14	6,53	47,75	13,6	17,8	16,3	326	39	27	0,37
KS26	331177,52	331362,29	1,03	4,00	7,63	55,25	13,5	22,7	19,0	322	49	31	0,43
KS27	331168,76	331357,99	0,83	3,46	7,64	49,54	10,9	19,6	19,1	260	43	31	0,38
KS28	331156,84	331358,52	0,86	3,56	7,27	49,55	11,2	20,2	18,1	269	44	30	0,38
KS29	331154,36	331356,04	0,87	3,31	7,06	47,76	11,4	18,8	17,6	272	41	29	0,37
KS30	331146,06	331351,41	0,77	3,31	6,39	44,79	10,1	18,8	15,9	241	41	26	0,35
KS31	331129,35	331365,73	0,72	2,28	5,27	35,32	9,4	12,9	13,1	225	28	21	0,28
KS32	331125,54	331366,39	0,51	2,59	3,24	29,41	6,7	14,7	8,1	160	32	13	0,23
KS33	331113,56	331361,98	0,44	2,75	3,91	31,19	5,8	15,6	9,8	138	34	16	0,24
KS34	331102,33	331361,62	0,61	3,01	5,78	39,53	8,0	17,1	14,4	191	37	23	0,30
KS35	331084,16	331359,34	0,68	2,67	5,38	37,41	8,9	15,2	13,4	213	33	22	0,29
KS36	331075,71	331352,37	0,65	2,14	5,39	34,04	8,5	12,1	13,4	203	26	22	0,27
KS37	331067,37	331359,07	0,63	2,53	3,92	32,56	8,2	14,4	9,8	197	31	16	0,25
KS38	331063,93	331355,16	0,92	3,49	5,32	45,08	12,0	19,8	13,3	288	43	22	0,35
KS39	331048,13	331355,28	0,65	2,89	5,51	38,64	8,5	16,4	13,7	203	36	22	0,30
KS40	331052,00	331352,59	0,64	3,12	5,36	39,46	8,4	17,7	13,4	200	39	22	0,30
KS41	331035,54	331352,19	0,66	3,08	4,99	35,59	8,6	17,5	12,4	207	38	20	0,30
KS42	331021,61	331349,63	0,84	3,10	6,64	45,07	11,0	17,6	16,6	263	38	27	0,35
KS43	331016,50	331335,51	0,60	4,02	5,24	43,71	7,8	22,8	13,1	188	50	21	0,33
KS44	331010,49	331332,07	0,83	2,63	4,80	37,77	10,9	14,9	12,0	260	32	19	0,29
KS45	331001,88	331326,78	0,66	2,67	5,63	37,81	8,6	15,2	14,0	207	33	23	0,29
KS46	330992,27	331321,05	0,65	2,93	5,24	38,20	8,5	16,6	13,1	203	36	21	0,29
KS47	330987,29	331316,87	0,64	3,06	5,07	38,44	8,4	17,4	12,6	200	38	21	0,30
KS48	330979.59	331307.24	0.55	3.07	5.96	39.56	7.2	17.4	14.9	172	38	24	0.30
------	-----------	-----------	------	------	------	-------	-----	------	------	-----	----	----	------
------	-----------	-----------	------	------	------	-------	-----	------	------	-----	----	----	------

Tab.4. 11 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Brzozowie – Kudowa, pomierzonespektrometrem GFII

	Współrzędne geog	graficzne ukł. 1992		Stężenie		M	oc dawk	i (nGy/h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
Brz1	287690,77	303501,83	0,75	2,89	6,02	41,24	9,8	16,4	15,0	235	36	24	0,32
Brz2	287698,55	303508,10	0,96	1,39	6,04	35,48	12,6	7,9	15,1	300	17	25	0,28
Brz3	287706,34	303514,37	0,67	2,65	5,27	37,02	8,8	15,0	13,1	210	33	21	0,29
Brz4	287714,13	303520,64	0,85	2,39	4,73	36,46	11,1	13,6	11,8	266	30	19	0,28
Brz5	287721,92	303526,91	0,66	2,54	4,91	35,28	8,6	14,4	12,2	207	31	20	0,27
Brz6	287730,11	303532,64	0,74	2,37	5,67	37,26	9,7	13,4	14,1	232	29	23	0,29
Brz7	287738,31	303538,36	0,76	2,59	5,43	38,13	9,9	14,7	13,5	238	32	22	0,30
Brz8	287746,50	303544,09	0,64	2,86	3,42	33,18	8,4	16,2	8,5	200	35	14	0,25
Brz9	287754,69	303549,82	0,57	2,83	3,37	31,93	7,5	16,1	8,4	178	35	14	0,24
Brz10	287762,89	303555,55	0,59	2,51	4,02	31,92	7,7	14,2	10,0	185	31	16	0,25
Brz11	287771,08	303561,28	0,65	2,10	4,76	32,33	8,5	11,9	11,9	203	26	19	0,25
Brz12	287779,27	303567,01	0,66	2,50	4,57	34,26	8,6	14,2	11,4	207	31	19	0,26
Brz13	287787,47	303572,74	0,54	2,63	5,03	34,50	7,1	14,9	12,5	169	32	20	0,27
Brz14	287795,48	303578,71	0,63	2,59	5,00	35,33	8,2	14,7	12,5	197	32	20	0,27
Brz15	287803,50	303584,69	0,65	2,26	5,36	34,65	8,5	12,8	13,4	203	28	22	0,27
Brz16	287811,52	303590,66	0,63	3,47	4,84	39,93	8,2	19,7	12,1	197	43	20	0,31
Brz17	287819,53	303596,64	0,75	2,35	5,33	36,42	9,8	13,3	13,3	235	29	22	0,28
Brz18	287826,98	303603,31	0,77	2,88	4,92	38,69	10,1	16,3	12,3	241	36	20	0,30
Brz19	287834,43	303609,97	0,71	2,97	5,90	40,84	9,3	16,9	14,7	222	37	24	0,32
Brz20	287841,88	303616,64	0,77	3,21	7,25	46,34	10,1	18,2	18,1	241	40	29	0,36

Tab.4. 12 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Brzozowie – Kudowa, pomierzonespektrometrem RS230

	Współrzędne geog	graficzne ukł. 1992		Stężenie	•	Μ	loc dawl	ki (nGy/l	n)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	Κ	eU	eTh	K	eU	eTh	
Brz1	287690,77	303501,83	1,2	1,9	7,5	45,6	15,7	10,8	18,7	376	23	30	0,36
Brz2	287698,55	303508,10	1,1	1,6	6,7	41,0	14,4	9,1	16,7	344	20	27	0,32
Brz3	287706,34	303514,37	1,1	1,9	6,2	40,7	14,4	10,8	15,5	344	23	25	0,32
Brz4	287714,13	303520,64	1,0	2,0	5,9	40,0	13,1	11,4	14,7	313	25	24	0,31
Brz5	287721,92	303526,91	1,0	1,6	6,3	39,3	13,1	9,1	15,7	313	20	26	0,30

Brz6	287730,11	303532,64	1,0	1,6	7,2	41,1	13,1	9,1	18,0	313	20	29	0,32
Brz7	287738,31	303538,36	1,0	1,6	6,3	38,5	13,1	9,1	15,7	313	20	26	0,30
Brz8	287746,50	303544,09	1,0	1,8	6,1	39,6	13,1	10,2	15,2	313	22	25	0,30
Brz9	287754,69	303549,82	0,9	1,1	5,2	32,2	11,8	6,2	13,0	282	14	21	0,24
Brz10	287762,89	303555,55	1,0	1,6	5,7	36,7	13,1	9,1	14,2	313	20	23	0,29
Brz11	287771,08	303561,28	0,7	1,1	5,1	28,9	9,2	6,2	12,7	219	14	21	0,22
Brz12	287779,27	303567,01	0,9	2,0	5,7	38,4	11,8	11,4	14,2	282	25	23	0,29
Brz13	287787,47	303572,74	1,0	1,6	7,3	40,9	13,1	9,1	18,2	313	20	30	0,32
Brz14	287795,48	303578,71	1,0	1,7	6,4	39,2	13,1	9,6	16,0	313	21	26	0,30
Brz15	287803,50	303584,69	1,0	1,9	6,5	40,7	13,1	10,8	16,2	313	23	26	0,31
Brz16	287811,52	303590,66	1,0	2,0	6,8	42,2	13,1	11,4	17,0	313	25	28	0,32
Brz17	287819,53	303596,64	1,1	2,0	7,9	46,1	14,4	11,4	19,7	344	25	32	0,36
Brz18	287826,98	303603,31	1,1	1,9	8,0	46,1	14,4	10,8	20,0	344	23	32	0,36
Brz19	287834,43	303609,97	1,1	1,7	7,6	44,8	14,4	9,6	19,0	344	21	31	0,34
Brz20	287841,88	303616,64	1,1	1,7	7,8	44,2	14,4	9,6	19,5	344	21	32	0,34
Brz21	287849,33	303623,31	1,1	2,0	7,8	47,2	14,4	11,4	19,5	344	25	32	0,36
Brz22	287856,77	303629,99	1,1	1,8	6,4	41,2	14,4	10,2	16,0	344	22	26	0,32
Brz23	287864,20	303636,67	1,0	1,5	6,6	38,8	13,1	8,5	16,5	313	19	27	0,30
Brz24	287871,64	303643,35	1,0	1,4	6,0	36,9	13,1	7,9	15,0	313	17	24	0,28
Brz25	287879,08	303650,03	0,9	1,6	6,0	37,2	11,8	9,1	15,0	282	20	24	0,28
Brz26	287886,66	303656,56	0,9	1,8	5,1	35,6	11,8	10,2	12,7	282	22	21	0,27
Brz27	287894,23	303663,08	1,0	1,5	5,2	34,5	13,1	8,5	13,0	313	19	21	0,27
Brz28	287901,81	303669,60	1,0	1,7	5,2	36,2	13,1	9,6	13,0	313	21	21	0,28
Brz29	287908,41	303675,67	1,0	1,6	5,8	37,7	13,1	9,1	14,5	313	20	24	0,29
Brz30	287914,58	303681,58	1,2	1,8	6,5	42,6	15,7	10,2	16,2	376	22	26	0,33
Brz31	287920,95	303687,43	1,2	1,9	6,8	44,2	15,7	10,8	17,0	376	23	28	0,34
Brz32	287926,75	303692,15	1,3	1,8	6,4	43,5	17,0	10,2	16,0	407	22	26	0,34

Tab.4. 13 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Srebrna Góra

	Współrzędne geog	graficzne ukł. 1992		Stężenie	;	N	loc daw	ki (nGy/l	h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
SR1	304548,50	334457,75	1,7	2,0	8,7	56,8	22,2	11,4	21,7	532	25	35	0,44
SR2	304556,93	334464,21	1,7	2,1	8,9	57,7	22,2	11,9	22,2	532	26	36	0,44
SR3	304563,37	334469,56	1,8	2,1	8,4	56,8	23,5	11,9	20,9	563	26	34	0,44
SR3_b	304563,37	334469,56	1,6	1,7	7,5	50,6	20,9	9,6	18,7	501	21	30	0,39
SR4	304569,28	334476,26	1,6	1,8	7,9	51,4	20,9	10,2	19,7	501	22	32	0,40
SR5	304576,47	334483,61	1,5	1,5	8,5	51,2	19,6	8,5	21,2	470	19	35	0,39

SR6	304581,83	334490,89	1,5	1,6	8,5	51,6	19,6	9,1	21,2	470	20	35	0,39
SR7	304590,40	334497,89	1,6	1,9	8,1	52,8	20,9	10,8	20,2	501	23	33	0,41
SR8	304597,32	334504,06	1,6	1,8	8,1	52,1	20,9	10,2	20,2	501	22	33	0,41
SR9	304601,17	334509,07	1,5	1,7	8,2	51,1	19,6	9,6	20,5	470	21	33	0,39
SR10	304609,64	334515,57	1,2	1,3	5,5	57,8	15,7	7,4	13,7	376	16	22	0,29
SR11	304617,65	334522,69	1,7	1,8	8,5	54,1	22,2	10,2	21,2	532	22	35	0,42
SR12	304626,31	334532,39	1,6	1,8	8,4	52,9	20,9	10,2	20,9	501	22	34	0,41
SR13	304633,55	334539,40	1,6	1,7	7,8	50,5	20,9	9,6	19,5	501	21	32	0,40
SR14	304642,20	334545,21	1,6	1,5	8,4	51,9	20,9	8,5	20,9	501	19	34	0,40
SR15	304648,11	334551,91	1,6	1,8	8,4	53,7	20,9	10,2	20,9	501	22	34	0,41
SR16	304657,63	334560,36	1,7	1,4	8,9	53,4	22,2	7,9	22,2	532	17	36	0,42
SR17	304662,62	334567,64	1,7	1,4	9,1	54,6	22,2	7,9	22,7	532	17	37	0,42
SR18	304669,40	334575,28	1,5	1,5	8,1	50,4	19,6	8,5	20,2	470	19	33	0,38
SR19	304676,91	334583,92	1,6	1,7	8,1	51,3	20,9	9,6	20,2	501	21	33	0,40
SR20	304683,20	334589,42	1,6	1,8	7,8	51,7	20,9	10,2	19,5	501	22	32	0,40
SR21	304690,74	334596,60	1,6	1,7	8,8	53,5	20,9	9,6	21,9	501	21	36	0,42
SR22	304698,36	334603,43	1,7	1,9	8,4	55,2	22,2	10,8	20,9	532	23	34	0,43
SR23	304707,75	334611,66	1,6	2,2	8,8	56,6	20,9	12,5	21,9	501	27	36	0,44
SR24	304713,52	334619,94	1,7	1,8	8,5	55,2	22,2	10,2	21,2	532	22	35	0,42
SR25	304718,47	334627,87	1,8	1,9	8,1	55,0	23,5	10,8	20,2	563	23	33	0,43
SR26	304725,30	334633,47	1,7	1,9	8,0	54,7	22,2	10,8	20,0	532	23	32	0,42
SR27	304732,37	334640,26	1,7	2,1	8,3	56,2	22,2	11,9	20,7	532	26	34	0,43
SR28	304738,96	334646,49	1,5	1,7	8,7	52,9	19,6	9,6	21,7	470	21	35	0,40
SR29	304744,96	334652,22	1,5	1,6	9,1	53,2	19,6	9,1	22,7	470	20	37	0,41
SR30	304752,81	334660,70	1,5	1,8	8,7	53,0	19,6	10,2	21,7	470	22	35	0,41
SR31	304759,99	334668,24	1,6	1,6	8,2	51,7	20,9	9,1	20,5	501	20	33	0,40
SR32	304767,13	334675,58	1,5	1,7	7,9	50,5	19,6	9,6	19,7	470	21	32	0,39
SR33	304774,91	334683,41	1,5	1,4	7,7	48,4	19,6	7,9	19,2	470	17	31	0,37

Tab.4. 14 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Potworów

	Współrzędne geog	graficzne ukł. 1992		Stężenie	;	M	loc dawl	ki (nGy/l	h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
PT01	297847,36	339776,89	1,4	1,4	6,1	41,8	18,3	7,9	15,2	438	17	25	0,33
PT02	297857,35	339783,24	1,5	1,4	6,6	45,3	19,6	7,9	16,5	470	17	27	0,35
PT03	297865,53	339788,08	1,5	1,4	5,8	42,0	19,6	7,9	14,5	470	17	24	0,33
PT04	297872,97	339790,72	1,3	1,4	6,0	40,6	17,0	7,9	15,0	407	17	24	0,32
PT05	297883,62	339796,49	1,3	1,1	6,9	42,3	17,0	6,2	17,2	407	14	28	0,32

PT06	297892,75	339798,98	1,3	1,3	6,5	41,6	17,0	7,6	16,2	407	17	26	0,32
PT07	297902,19	339802,89	1,2	1,6	6,2	41,6	15,7	9,1	15,5	376	20	25	0,32
PT08	297913,15	339807,68	1,2	1,4	6,3	40,2	15,7	7,9	15,7	376	17	26	0,31
PT09	297921,83	339808,45	1,2	1,7	6,5	42,6	15,7	9,6	16,2	376	21	26	0,33
PT10	297930,76	339810,85	1,2	1,5	6,2	40,7	15,7	8,5	15,5	376	19	25	0,31
PT11	297941,81	339814,67	1,2	1,4	6,7	41,9	15,7	7,9	16,7	376	17	27	0,32
PT12	297949,98	339815,41	1,2	1,5	6,2	40,3	15,7	8,5	15,5	376	19	25	0,31
PT13	297962,59	339817,85	1,2	1,3	6,3	40,3	15,7	7,4	15,7	376	16	26	0,31
PT14	297973,79	339822,37	1,2	1,5	6,8	41,8	15,7	8,5	17,0	376	19	28	0,32
PT15	297983,48	339825,23	1,2	1,6	6,3	41,4	15,7	9,1	15,7	376	20	26	0,32
PT16	297993,32	339827,61	1,2	1,5	7,1	43,0	15,7	8,5	17,7	376	19	29	0,33
PT17	298000,66	339828,01	1,2	1,6	6,6	41,9	15,7	9,1	16,5	376	20	27	0,33
PT18	298011,97	339832,21	1,3	1,5	6,6	42,5	17,0	8,5	16,5	407	19	27	0,33
PT19	298021,10	339832,82	1,2	1,4	6,9	42,2	15,7	7,9	17,2	376	17	28	0,32
PT20	298031,98	339836,89	1,1	1,6	7,1	42,9	14,4	9,1	17,7	344	20	29	0,32
PT21	298040,66	339837,03	1,2	1,6	6,6	41,4	15,7	9,1	16,5	376	20	27	0,33
PT22	298051,74	339840,31	1,1	1,4	6,8	39,9	14,4	7,9	17,0	344	17	28	0,31
PT23	298062,62	339842,13	0,8	1,4	6,1	34,7	10,5	7,9	15,2	250	17	25	0,26
PT24	298071,56	339841,59	0,8	1,6	5,8	35,0	10,5	9,1	14,5	250	20	24	0,27
PT25	298083,57	339845,22	0,8	1,4	6,3	34,8	10,5	7,9	15,7	250	17	26	0,27
PT26	298092,80	339849,05	0,8	1,4	6,4	35,6	10,5	7,9	16,0	250	17	26	0,27
PT27	298102,53	339851,11	0,9	1,4	6,1	35,3	11,8	7,9	15,2	282	17	25	0,28
PT28	298112,70	339856,76	0,9	1,5	6,4	37,3	11,8	8,5	16,0	282	19	26	0,29
PT29	298122,01	339859,94	0,9	1,3	6,0	35,5	11,8	7,4	15,0	282	16	24	0,27
PT30	298132,17	339864,81	0,9	1,5	6,1	36,5	11,8	8,5	15,2	282	19	25	0,28
PT31	298141,81	339868,09	0,9	1,2	5,8	33,6	11,8	6,8	14,5	282	15	24	0,26
PT32	298150,27	339871,37	0,9	1,5	6,6	38,1	11,8	8,5	16,5	282	19	27	0,29
PT33	298158,74	339874,23	0,9	1,4	6,3	36,1	11,8	7,9	15,7	282	17	26	0,28
PT34	298168,90	339877,30	0,9	1,8	6,5	39,6	12,1	10,4	16,2	290	23	26	0,30
PT35	298179,22	339880,69	0,9	2,1	6,2	40,4	11,8	11,9	15,5	282	26	25	0,31
PT36	298188,69	339882,38	1,0	2,0	5,9	39,2	13,1	11,4	14,7	313	25	24	0,31
PT37	298199,79	339888,04	1,1	2,0	6,1	41,3	14,4	11,4	15,2	344	25	25	0,32

	Współrzędne geogr	aficzne ukł. 1992	Stężeni	e		Moc d	lawki (r	nGy/h)		Stężenie al	ktywności	(Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	Κ	eU	eTh	
SŁ01	280054,84	327867,84	0,8	1,4	5,2	32,3	10,5	7,9	13,0	250	17	21	0,25
SŁ02	280064,56	327869,94	0,9	1,4	5,2	33,6	11,8	7,9	13,0	282	17	21	0,26
SŁ03	280074,40	327872,03	0,8	1,7	4,7	32,3	10,5	9,6	11,7	250	21	19	0,25
SŁ04	280084,12	327874,13	0,8	1,5	5,1	32,9	10,5	8,5	12,7	250	19	21	0,25
SŁ05	280093,95	327876,23	1,0	1,8	5,8	38,4	13,1	10,2	14,5	313	22	24	0,30
SŁ06	280103,67	327878,33	1,0	2,0	6,0	40,1	13,1	11,4	15,0	313	25	24	0,31
SŁ07	280113,51	327880,43	0,8	1,4	5,2	31,9	10,5	7,9	13,0	250	17	21	0,25
SŁ08	280123,23	327882,52	0,7	1,0	3,7	24,0	9,2	5,7	9,2	219	12	15	0,19
SŁ09	280133,06	327884,62	0,6	0,9	3,4	21,9	7,8	5,1	8,5	188	11	14	0,17
SŁ10	280142,78	327886,86	0,9	0,7	3,6	24,7	11,8	4,0	9,0	282	9	15	0,20
SŁ11	280152,49	327889,31	0,6	0,7	3,2	20,3	7,8	4,0	8,0	188	9	13	0,16
SŁ12	280162,09	327891,83	0,5	0,6	3,1	18,6	6,5	3,4	7,7	157	7	13	0,14
SŁ13	280171,80	327894,28	0,6	0,8	3,1	20,5	7,8	4,5	7,7	188	10	13	0,16
SŁ14	280181,51	327896,73	0,7	1,1	3,7	24,7	9,2	6,2	9,2	219	14	15	0,19
SŁ15	280191,22	327899,18	0,8	1,0	3,8	26,5	10,5	5,7	9,5	250	12	15	0,20
SŁ16	280200,93	327901,63	1,0	1,2	4,3	30,7	13,1	6,8	10,7	313	15	17	0,24
SŁ17	280210,53	327904,08	1,2	1,7	6,2	41,6	15,7	9,6	15,5	376	21	25	0,32
SŁ18	280220,24	327906,60	1,2	2,1	6,9	45,9	15,7	11,9	17,2	376	26	28	0,35
SŁ19	280229,95	327909,05	1,4	2,1	8,2	51,8	18,3	11,9	20,5	438	26	33	0,40
SŁ20	280239,66	327911,50	1,2	2,0	7,7	47,4	15,7	11,4	19,2	376	25	31	0,36
SŁ21	280249,37	327913,96	1,0	1,5	6,1	37,3	13,1	8,5	15,2	313	19	25	0,29
SŁ22	280258,97	327916,40	1,2	1,4	6,1	39,4	15,7	7,9	15,2	376	17	25	0,31
SŁ23	280268,68	327918,93	1,2	1,7	6,5	42,3	15,7	9,6	16,2	376	21	26	0,33
SŁ24	280278,39	327921,38	1,3	2,1	8,0	49,8	17,0	11,9	20,0	407	26	32	0,38
SŁ25	280288,10	327923,83	1,2	2,0	6,7	44,6	15,7	11,4	16,7	376	25	27	0,34
SŁ26	280297,82	327926,28	1,3	2,3	7,7	51,0	17,0	13,1	19,2	407	28	31	0,39
SŁ27	280307,42	327928,73	1,3	2,2	8,0	50,3	17,0	12,5	20,0	407	27	32	0,39
SŁ28	280317,12	327931,25	1,2	2,0	8,3	49,3	15,7	11,4	20,7	376	25	34	0,38
SŁ29	280326,83	327933,70	1,3	2,1	7,9	49,2	17,0	11,9	19,7	407	26	32	0,38
SŁ30	280336,55	327936,15	1,3	2,1	7,7	49,2	17,0	11,9	19,2	407	26	31	0,38

Tab.4. 15 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Stara Łomnica, pomierzonespektrometrem RS230

SŁ31	280346,26	327938,60	1,3	2,3	7,3	48,5	17,0	13,1	18,2	407	28	30	0,38
SŁ32	280355,86	327941,05	1,3	2,1	8,2	50,5	17,0	11,9	20,5	407	26	33	0,39
SŁ33	280365,57	327943,57	1,4	1,9	8,9	52,8	18,3	10,8	22,2	438	23	36	0,40
SŁ34	280375,29	327945,74	1,3	2,1	8,9	52,5	17,0	11,9	22,2	407	26	36	0,40
SŁ35	280385,27	327946,63	1,3	2,0	8,4	51,0	17,0	11,4	20,9	407	25	34	0,39
SŁ36	280395,25	327947,53	1,3	2,3	8,5	52,5	17,0	13,1	21,2	407	28	35	0,40

Tab.4. 16 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Bystrzyca Kłodzka, pomierzonespektrometrem GFII

	Współrzędne geog	graficzne ukł. 1992		Stężenie	•	M	oc dawk	i (nGy/h)	Stężenie	aktywnośc	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
KŁ01	274408,42	329519,60	0,76	3,34	5,59	42,87	9,9	19,0	13,9	238	41	23	0,33
KŁ02	274411,37	329510,05	0,75	3,81	5,02	44,02	9,8	21,6	12,5	235	47	20	0,34
KŁ03	274414,32	329500,49	1,01	2,88	6,95	46,86	13,2	16,3	17,3	316	36	28	0,37
KŁ04	274419,46	329492,07	1,00	2,91	7,35	48,02	13,1	16,5	18,3	313	36	30	0,37
KŁ05	274425,52	329484,13	1,08	2,44	7,52	46,71	14,1	13,8	18,8	338	30	31	0,37
KŁ06	274433,61	329478,25	0,73	3,73	4,34	42,72	9,5	21,2	10,8	228	46	18	0,32
KŁ07	274441,44	329472,07	0,90	2,93	8,05	48,47	11,8	16,6	20,1	282	36	33	0,38
KŁ08	274448,51	329465,00	0,94	3,40	6,73	48,33	12,3	19,3	16,8	294	42	27	0,37
KŁ09	274455,58	329457,93	0,92	2,58	5,80	41,17	12,0	14,6	14,5	288	32	24	0,32
KŁ10	274460,97	329449,63	0,91	2,54	6,50	42,57	11,9	14,4	16,2	285	31	26	0,33
KŁ11	274465,64	329440,79	0,92	2,63	6,73	43,80	12,0	14,9	16,8	288	32	27	0,34
KŁ12	274470,14	329431,89	0,84	2,87	6,17	42,70	11,0	16,3	15,4	263	35	25	0,33
KŁ13	274472,56	329422,19	0,71	3,52	7,00	46,70	9,3	20,0	17,5	222	43	28	0,36
KŁ14	274474,99	329412,49	0,88	3,02	7,42	47,14	11,5	17,1	18,5	275	37	30	0,37
KŁ15	274476,27	329402,67	0,86	2,29	8,60	44,14	11,2	13,0	21,4	269	28	35	0,36
KŁ16	274475,96	329392,68	0,74	3,17	7,08	45,41	9,7	18,0	17,7	232	39	29	0,35
KŁ17	274475,64	329382,69	0,92	2,15	7,24	42,23	12,0	12,2	18,1	288	27	29	0,33
KŁ18	274475,32	329372,69	0,86	3,56	6,95	48,72	11,2	20,2	17,3	269	44	28	0,38
KŁ19	274475,12	329362,70	0,85	3,26	8,02	49,55	11,1	18,5	20,0	266	40	33	0,39
KŁ20	274475,12	329352,70	1,02	3,17	8,50	53,70	13,3	18,0	21,2	319	39	35	0,41
KŁ21	274475,12	329342,71	1,02	2,89	5,92	44,49	13,3	16,4	14,8	319	36	24	0,35
KŁ22	274475,72	329332,77	0,96	3,38	4,50	42,95	12,6	19,2	11,2	300	42	18	0,33
KŁ23	274477,57	329322,95	0,97	2,71	6,40	44,03	12,7	15,4	16,0	304	33	26	0,34
KŁ24	274479,43	329313,12	0,97	2,54	6,06	42,25	12,7	14,4	15,1	304	31	25	0,33
KŁ25	274481,29	329303,30	1,04	2,71	7,11	46,77	13,6	15,4	17,7	326	33	29	0,36

KŁ26	274481,52	329293,32	0,86	3,76	7,53	51,44	11,2	21,3	18,8	269	46	31	0,40
KŁ27	274481,53	329283,33	0,97	3,31	6,89	48,64	12,7	18,8	17,2	304	41	28	0,38
KŁ28	274481,55	329273,33	0,85	3,46	7,91	50,37	11,1	19,6	19,7	266	43	32	0,39
KŁ29	274481,56	329263,33	0,99	2,90	8,82	51,40	12,9	16,5	22,0	310	36	36	0,40
KŁ30	274482,91	329253,46	0,97	4,05	7,37	53,99	12,7	23,0	18,4	304	50	30	0,42
KŁ31	274484,15	329245,56	1,07	2,97	7,51	49,61	14,0	16,9	18,7	335	37	30	0,39
KŁ32	274485,67	329236,61	1,09	3,44	7,30	51,93	14,3	19,5	18,2	341	42	30	0,40
KŁ33	274487,27	329227,74	1,15	3,11	8,33	53,50	15,0	17,6	20,8	360	38	34	0,42
KŁ34	274488,96	329218,71	1,08	3,75	7,27	53,47	14,1	21,3	18,1	338	46	30	0,41
KŁ35	274490,91	329209,33	1,03	3,63	6,65	50,68	13,5	20,6	16,6	322	45	27	0,39
KŁ36	274492,43	329201,14	0,98	3,27	7,23	49,33	12,8	18,6	18,0	307	40	29	0,38
KŁ37	274494,20	329191,68	1,10	3,55	5,70	48,75	14,4	20,1	14,2	344	44	23	0,38
KŁ38	274495,72	329182,73	1,11	2,81	7,15	48,36	14,5	15,9	17,8	347	35	29	0,38
KŁ39	274498,00	329173,11	1,09	3,23	7,73	51,92	14,3	18,3	19,3	341	40	31	0,40
KŁ40	274501,52	329164,53	1,04	3,76	6,16	50,36	13,6	21,3	15,4	326	46	25	0,39
KŁ41	274501,89	329155,45	1,07	3,92	5,58	50,08	14,0	22,2	13,9	335	48	23	0,39
KŁ42	274502,29	329145,46	1,13	3,07	6,61	48,70	14,8	17,4	16,5	354	38	27	0,38
KŁ43	274502,70	329135,48	1,24	3,04	6,65	50,10	16,2	17,3	16,6	388	38	27	0,39
KŁ44	274503,11	329125,49	1,20	2,53	6,03	45,12	15,7	14,4	15,0	376	31	24	0,35
KŁ45	274503,51	329115,50	1,06	3,66	4,96	47,00	13,9	20,8	12,4	332	45	20	0,36
KŁ46	274503,92	329105,51	1,00	4,07	5,20	49,15	13,1	23,1	13,0	313	50	21	0,38
KŁ47	274504,48	329095,53	1,14	3,19	6,36	48,89	14,9	18,1	15,9	357	39	26	0,38
KŁ48	274505,18	329085,56	0,98	3,48	6,52	48,79	12,8	19,7	16,3	307	43	26	0,38
KŁ49	274505,87	329075,59	0,93	3,24	6,68	47,19	12,2	18,4	16,7	291	40	27	0,37
KŁ50	274506,57	329065,61	0,94	3,48	5,98	46,95	12,3	19,7	14,9	294	43	24	0,36
KŁ51	274509,47	329056,21	0,97	3,10	6,21	45,80	12,7	17,6	15,5	304	38	25	0,35
KŁ52	274513,71	329047,16	0,92	3,35	5,58	44,97	12,0	19,0	13,9	288	41	23	0,35
KŁ53	274517,70	329038,01	0,96	3,17	5,22	43,57	12,6	18,0	13,0	300	39	21	0,34
KŁ54	274520,80	329028,50	1,22	2,13	5,93	42,84	16,0	12,1	14,8	382	26	24	0,34
KŁ55	274523,90	329019,00	0,91	3,14	5,56	43,55	11,9	17,8	13,9	285	39	23	0,34
KŁ56	274526,93	329009,48	1,00	3,34	6,13	47,38	13,1	19,0	15,3	313	41	25	0,37
KŁ57	274529,41	328999,79	1,10	3,09	5,96	46,82	14,4	17,5	14,9	344	38	24	0,36
KŁ58	274531,90	328990,11	1,00	3,39	6,50	48,40	13,1	19,2	16,2	313	42	26	0,38
KŁ59	274534,38	328980,43	1,02	3,34	4,80	44,21	13,3	19,0	12,0	319	41	19	0,34
KŁ60	274536,86	328970,74	1,09	2,12	6,80	43,19	14,3	12,0	17,0	341	26	28	0,34
KŁ61	274539,56	328960,22	0,91	2,72	3,94	37,15	11,9	15,4	9,8	285	34	16	0,29
KŁ62	274542,45	328951,56	0,90	3,49	4,86	43,73	11,8	19,8	12,1	282	43	20	0,34

KŁ63	274545,61	328942,08	1,24	2,25	5,52	42,79	16,2	12,8	13,8	388	28	22	0,33
KŁ64	274546,73	328932,75	1,31	2,91	5,43	47,13	17,1	16,5	13,5	410	36	22	0,37
KŁ65	274542,15	328923,86	0,99	3,16	5,73	45,19	12,9	17,9	14,3	310	39	23	0,35
KŁ66	274537,57	328914,98	1,16	3,33	6,11	49,33	15,2	18,9	15,2	363	41	25	0,38
KŁ67-	274535,31	328910,83	1,15	3,18	6,70	50,07	15,0	18,0	16,7	360	39	27	0,39
KŁ67	274532,99	328906,09	1,00	3,82	8,27	55,41	13,1	21,7	20,6	313	47	34	0,43
KŁ67+	274530,83	328901,92	1,09	3,89	6,70	50,06	14,3	22,1	16,7	341	48	27	0,41
KŁ68	274528,41	328897,21	1,27	2,63	6,21	47,02	16,6	14,9	15,5	398	32	25	0,37
KŁ69	274524,07	328891,55	1,27	2,56	5,18	44,06	16,6	14,5	12,9	398	32	21	0,34
KŁ70	274519,65	328885,33	1,28	2,54	4,27	41,73	16,7	14,4	10,6	401	31	17	0,32
KŁ71	274513,76	328877,83	1,19	2,47	4,13	39,93	15,6	14,0	10,3	372	31	17	0,31
KŁ72	274508,27	328870,80	1,19	3,32	4,97	46,13	15,6	18,8	12,4	372	41	20	0,36
KŁ73	274502,99	328864,11	1,34	3,46	5,85	51,90	17,5	19,6	14,6	419	43	24	0,40
KŁ74	274498,51	328858,31	1,31	2,98	7,34	52,33	17,1	16,9	18,3	410	37	30	0,41
KŁ75	274492,00	328851,42	1,23	3,50	5,59	50,85	16,1	19,9	13,9	385	43	23	0,39
KŁ76	274487,72	328846,69	1,10	2,67	6,72	46,34	14,4	15,2	16,8	344	33	27	0,36
KŁ77	274483,39	328840,00	1,03	3,24	5,97	46,78	13,5	18,4	14,9	322	40	24	0,36
KŁ78	274479,72	328836,76	0,95	2,49	6,49	42,70	12,4	14,1	16,2	297	31	26	0,33

 Tab.4. 17 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Bystrzyca Kłodzka, pomierzone spektrometrem RS230

	Współrzędne geog	graficzne ukł. 1992		Stężenie C [%] eU [ppm] eTh [ppm] I 1,2 2,0 7,7 4 1,1 1,7 8,1 4 1,3 2,0 8,6 5 1,3 2,3 7,7 5 0.9 1.0 6.7 3			loc dawl	ci (nGy/	h)	Stężenie	aktywnośc	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
KŁ01	274408,42	329519,60	1,2	2,0	7,7	47,6	15,7	11,4	19,2	376	25	31	0,36
KŁ02	274411,37	329510,05	1,1	1,7	8,1	45,1	14,4	9,6	20,2	344	21	33	0,35
KŁ03	274414,32	329500,49	1,3	2,0	8,6	50,7	17,0	11,4	21,4	407	25	35	0,39
KŁ04	274419,46	329492,07	1,3	2,3	7,7	50,3	17,0	13,1	19,2	407	28	31	0,39
KŁ05	274425,52	329484,13	0,9	1,0	6,7	35,7	11,8	5,7	16,7	282	12	27	0,27
KŁ06	274433,61	329478,25	1,1	1,3	6,4	38,5	14,4	7,4	16,0	344	16	26	0,30
KŁ07	274441,44	329472,07	1,1	1,8	7,2	44,2	14,4	10,2	18,0	344	22	29	0,34
KŁ08	274448,51	329465,00	1,2	2,1	7,4	48,0	15,7	11,9	18,5	376	26	30	0,36
KŁ09	274455,58	329457,93	0,8	1,1	4,3	27,9	10,5	6,2	10,7	250	14	17	0,22
KŁ10	274460,97	329449,63	1,1	1,6	5,7	38,7	14,4	9,1	14,2	344	20	23	0,30
KŁ11	274465,64	329440,79	1,2	1,5	5,5	38,6	15,7	8,5	13,7	376	19	22	0,30
KŁ12	274470,14	329431,89	1,2	1,8	7,3	44,4	15,7	10,2	18,2	376	22	30	0,35
KŁ13	274472,56	329422,19	1,2	2,1	8,2	49,7	15,7	11,9	20,5	376	26	33	0,38

KŁ14	274474,99	329412,49	1,1	2,0	7,9	46,7	14,4	11,4	19,7	344	25	32	0,36
KŁ15	274476,27	329402,67	1,0	1,3	6,3	36,5	13,1	7,4	15,7	313	16	26	0,29
KŁ16	274475,96	329392,68	1,1	1,7	6,4	41,2	14,4	9,6	16,0	344	21	26	0,31
KŁ17	274475,64	329382,69	1,1	2,2	7,4	45,9	14,4	12,5	18,5	344	27	30	0,36
KŁ18	274475,32	329372,69	1,0	2,4	7,9	47,7	13,1	13,6	19,7	313	30	32	0,36
KŁ19	274475,12	329362,70	1,0	2,1	8,2	47,0	13,1	11,9	20,5	313	26	33	0,36
KŁ20	274475,12	329352,70	1,3	1,8	8,4	48,9	17,0	10,2	20,9	407	22	34	0,38
KŁ21	274475,12	329342,71	1,2	1,9	8,4	48,8	15,7	10,8	20,9	376	23	34	0,37
KŁ22	274475,72	329332,77	1,2	1,8	7,2	44,4	15,7	10,2	18,0	376	22	29	0,35
KŁ23	274477,57	329322,95	1,3	1,9	8,1	49,1	17,0	10,8	20,2	407	23	33	0,38
KŁ24	274479,43	329313,12	1,2	1,9	7,3	46,6	15,7	10,8	18,2	376	23	30	0,35
KŁ25	274481,29	329303,30	1,3	2,0	8,5	51,2	17,0	11,4	21,2	407	25	35	0,39
KŁ26	274481,52	329293,32	1,4	1,8	8,3	50,9	18,3	10,2	20,7	438	22	34	0,39
KŁ27	274481,53	329283,33	1,2	2,0	8,4	49,3	15,7	11,4	20,9	376	25	34	0,38
KŁ28	274481,55	329273,33	1,3	2,2	9,7	54,5	17,0	12,5	24,2	407	27	39	0,42
KŁ29	274481,56	329263,33	1,3	2,2	9,1	53,6	17,0	12,5	22,7	407	27	37	0,41
KŁ30	274482,91	329253,46	1,3	2,2	9,8	54,7	17,0	12,5	24,4	407	27	40	0,43
KŁ31	274484,15	329245,56	1,2	2,3	8,8	52,3	15,7	13,1	21,9	376	28	36	0,40
KŁ32	274485,67	329236,61	1,3	2,3	8,7	53,1	17,0	13,1	21,7	407	28	35	0,41
KŁ33	274487,27	329227,74	1,5	2,3	8,6	55,8	19,6	13,1	21,4	470	28	35	0,43
KŁ34	274488,96	329218,71	1,4	2,0	8,9	53,0	18,3	11,4	22,2	438	25	36	0,41
KŁ35	274490,91	329209,33	1,4	2,4	7,4	51,2	18,3	13,6	18,5	438	30	30	0,40
KŁ36	274492,43	329201,14	1,4	1,9	7,7	49,5	18,3	10,8	19,2	438	23	31	0,38
KŁ37	274494,20	329191,68	1,5	2,4	8,6	56,0	19,6	13,6	21,4	470	30	35	0,43
KŁ38	274495,72	329182,73	1,5	2,1	8,1	52,5	19,6	11,9	20,2	470	26	33	0,41
KŁ39	274498,00	329173,11	1,6	2,1	8,7	55,3	20,9	11,9	21,7	501	26	35	0,43
KŁ40	274501,52	329164,53	1,5	2,1	8,3	53,4	19,6	11,9	20,7	470	26	34	0,41
KŁ41	274501,89	329155,45	1,4	2,5	7,5	52,6	18,3	14,2	18,7	438	31	30	0,40
KŁ42	274502,29	329145,46	1,5	1,8	6,8	48,3	19,6	10,2	17,0	470	22	28	0,37
KŁ43	274502,70	329135,48	1,4	2,2	8,0	52,5	18,3	12,5	20,0	438	27	32	0,40
KŁ44	274503,11	329125,49	1,4	2,0	6,9	47,3	18,3	11,4	17,2	438	25	28	0,37
KŁ45	274503,51	329115,50	1,4	1,9	7,1	47,9	18,3	10,8	17,7	438	23	29	0,37
KŁ46	274503,92	329105,51	1,1	1,7	7,0	43,0	14,4	9,6	17,5	344	21	28	0,33
KŁ47	274504,48	329095,53	1,5	2,4	7,3	52,2	19,6	13,6	18,2	470	30	30	0,40
KŁ48	274505,18	329085,56	1,4	2,2	7,4	49,5	18,3	12,5	18,5	438	27	30	0,39
KŁ49	274505,87	329075,59	1,3	2,1	7,0	47,7	17,0	11,9	17,5	407	26	28	0,36
KŁ50	274506,57	329065,61	1,4	2,1	7,6	50,1	18,3	11,9	19,0	438	26	31	0,39

KŁ51	274509,47	329056,21	1,4	2,2	6,7	49,1	18,3	12,5	16,7	438	27	27	0,37
KŁ52	274513,71	329047,16	1,3	2,1	7,5	48,1	17,0	11,9	18,7	407	26	30	0,37
KŁ53	274517,70	329038,01	1,4	2,0	6,1	45,2	18,3	11,4	15,2	438	25	25	0,35
KŁ54	274520,80	329028,50	1,4	1,9	7,6	49,1	18,3	10,8	19,0	438	23	31	0,38
KŁ55	274523,90	329019,00	1,3	2,0	7,3	48,0	17,0	11,4	18,2	407	25	30	0,37
KŁ56	274526,93	329009,48	1,3	2,0	7,2	46,9	17,0	11,4	18,0	407	25	29	0,36
KŁ57	274529,41	328999,79	1,3	1,9	7,5	47,3	17,0	10,8	18,7	407	23	30	0,37
KŁ58	274531,90	328990,11	1,3	2,1	6,8	47,0	17,0	11,9	17,0	407	26	28	0,36
KŁ59	274534,38	328980,43	1,2	1,8	5,8	41,5	15,7	10,2	14,5	376	22	24	0,32
KŁ60	274536,86	328970,74	1,0	1,1	5,3	32,9	13,1	6,2	13,2	313	14	22	0,26
KŁ61	274539,56	328960,22	1,4	1,9	6,1	44,9	18,3	10,8	15,2	438	23	25	0,35
KŁ62	274542,45	328951,56	1,2	1,8	5,7	41,1	15,7	10,2	14,2	376	22	23	0,32
KŁ63	274545,61	328942,08	1,5	1,9	7,1	48,6	19,6	10,8	17,7	470	23	29	0,38
KŁ64	274546,73	328932,75	1,5	1,8	7,3	49,0	19,6	10,2	18,2	470	22	30	0,38
KŁ65	274542,15	328923,86	1,6	2,0	7,3	51,8	20,9	11,4	18,2	501	25	30	0,40
KŁ66	274537,57	328914,98	1,5	1,9	7,3	49,2	19,6	10,8	18,2	470	23	30	0,38
KŁ67-	274535,31	328910,83	1,4	2,1	6,9	47,4	18,3	11,9	17,2	438	26	28	0,37
KŁ67	274532,99	328906,09	1,5	2,2	7,8	53,0	19,6	12,5	19,5	470	27	32	0,41
KŁ67+	274530,83	328901,92	1,6	1,4	6,2	44,9	20,9	7,9	15,5	501	17	25	0,35
KŁ68	274528,41	328897,21	1,5	1,6	6,7	46,4	19,6	9,1	16,7	470	20	27	0,36
KŁ69	274524,07	328891,55	1,5	1,5	6,1	44,2	19,6	8,5	15,2	470	19	25	0,34
KŁ70	274519,65	328885,33	1,5	1,6	5,5	43,6	19,6	9,1	13,7	470	20	22	0,33
KŁ71	274513,76	328877,83	1,6	1,2	4,5	39,3	20,9	6,8	11,2	501	15	18	0,31
KŁ72	274508,27	328870,80	1,5	1,5	6,0	44,4	19,6	8,5	15,0	470	19	24	0,34
KŁ73	274502,99	328864,11	1,6	1,8	6,6	48,4	20,9	10,2	16,5	501	22	27	0,38
KŁ74	274498,51	328858,31	1,6	1,9	7,4	51,8	20,9	10,8	18,5	501	23	30	0,40
KŁ75	274492,00	328851,42	1,7	1,9	7,9	53,4	22,2	10,8	19,7	532	23	32	0,42
KŁ76	274487,72	328846,69	1,5	2,0	8,3	52,6	19,6	11,4	20,7	470	25	34	0,41
KŁ77	274483,39	328840,00	1,4	2,2	7,3	50,1	18,3	12,5	18,2	438	27	30	0,38
KŁ78	274479,72	328836,76	1,3	2,1	7,1	47,9	17,0	11,9	17,7	407	26	29	0,37

	• 1	.1 ,	1. 1	
\mathbf{I} ab \mathbf{A} IX \mathbf{A} V alizade a number of	w nomigrowweb org	7 WWMIZI nomiarou	u radiometrucznuch	Wzdłuż protilu Spalona I
	// ותחווומות איערוו תומ			
	r r • • • • • • • • • • • • • • •	–	· - · · · · · · · · · · · · · · · · · ·	

	Współrzędne geog	graficzne ukł. 1992		Stężenie	;	М	oc dawk	i (nGy/h	l)	Stężenie	aktywnośc	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_I_1	270343,82	324053,66	1,45	2,39	2,95	39,93	19,0	13,6	7,4	454	30	12	0,31
S_I_2	270337,25	324050,44	1,53	2,85	5,00	48,36	16,5	17,5	12,1	394	38	20	0,36
S_I_3	270347,58	324030,82	1,07	2,29	3,46	35,69	9,7	14,0	8,4	232	30	14	0,25

S_I_4	270324,46	324029,98	0,60	2,26	2,51	26,93	10,3	13,0	7,7	247	28	12	0,24
S_I_5	270317,39	324018,41	1,28	2,69	5,39	45,43	9,2	12,2	8,5	219	27	14	0,23
S_I_6	270310,88	324020,19	1,12	2,41	2,66	34,93	9,9	8,8	8,7	238	19	14	0,21
S_I_7	270293,91	324028,76	1,14	2,23	4,07	37,71	12,6	14,0	7,6	300	31	12	0,26
S_I_8	270289,70	324031,40	1,03	2,33	3,72	35,99	14,8	13,5	6,6	354	29	11	0,27
S_I_9	270271,75	324015,76	1,36	3,27	5,00	48,84	5,4	11,0	3,7	128	24	6	0,15
S_I_10	270263,87	324022,05	1,26	3,08	4,86	46,02	18,3	15,2	11,4	438	33	19	0,35
S_I_11	270255,46	324014,00	0,74	2,46	3,36	31,97	9,2	14,8	5,5	219	32	9	0,22
S_I_12	270246,61	324018,99	0,79	2,29	3,07	30,95	20,0	16,2	12,5	479	35	20	0,38
S_I_13	270241,89	324013,77	0,70	2,15	3,42	29,93	12,9	14,7	9,0	310	32	15	0,28
S_I_14	270233,90	324009,94	0,76	1,55	3,50	27,49	13,1	14,5	9,6	313	32	16	0,29
S_I_15	270218,02	324002,14	0,96	2,47	3,05	34,17	14,4	19,0	15,8	344	41	26	0,38
S_I_16	270220,69	323998,73	1,13	2,38	2,66	34,91	13,5	14,8	9,3	322	32	15	0,29
S_I_17	270205,78	323988,82	0,41	1,94	1,47	20,07	8,9	11,5	7,9	213	25	13	0,22
S_I_18	270200,63	323979,81	1,40	2,67	4,56	44,80	11,4	15,2	10,5	272	33	17	0,29
S_I_19	270207,87	323979,48	0,70	2,60	2,20	29,35	12,7	16,4	13,0	304	36	21	0,33
S_I_20	270208,33	323955,61	0,99	2,59	3,61	36,62	12,7	16,4	12,8	304	36	21	0,32
S_I_21	270211,15	323951,21	1,00	2,56	3,86	37,17	16,2	13,9	19,4	388	30	32	0,39
S_I_22	270226,50	323941,17	1,10	3,35	6,35	46,73	11,8	15,7	13,6	282	34	22	0,32
S_I_23	270207,95	323930,21	1,03	2,60	3,73	37,49	14,0	13,0	8,6	335	28	14	0,28
S_I_24	270199,61	323933,50	0,68	2,03	3,17	28,26	10,7	14,5	13,4	257	31	22	0,30
S_I_25	270198,24	323917,55	0,87	2,68	4,22	37,04	10,3	12,9	10,9	247	28	18	0,26
S_I_26	270190,73	323912,74	0,97	2,89	5,21	42,08	13,9	14,8	10,5	332	32	17	0,30
S_I_27	270180,38	323906,05	0,97	2,89	5,12	41,89	14,6	16,3	11,0	351	36	18	0,33
S_I_28	270171,76	323894,28	1,24	2,45	7,78	49,47	13,9	12,6	14,7	332	27	24	0,32
S_I_29	270164,21	323900,38	0,90	2,76	5,45	41,02	21,7	21,7	15,5	520	47	25	0,46
S_I_30	270156,52	323887,36	0,82	2,55	5,39	38,70	11,9	17,0	11,5	285	37	19	0,31
S_I_31	270150,74	323880,46	0,79	2,27	4,38	34,14	14,4	17,3	7,5	344	38	12	0,30
S_I_32	270141,49	323874,38	1,06	2,61	4,20	39,14	7,8	12,8	6,3	188	28	10	0,21
S_I_33	270134,63	323869,95	1,12	2,88	4,43	42,11	16,7	15,3	13,4	401	33	22	0,35
S_I_34	270128,03	323860,74	1,06	2,22	5,90	41,16	14,6	13,7	6,6	351	30	11	0,27
S_I_35	270119,69	323853,98	1,66	3,82	6,21	58,83	14,9	12,7	10,2	357	28	17	0,29
S_I_36	270111,73	323849,08	0,91	2,99	4,60	40,39	13,5	13,2	9,3	322	29	15	0,28
S_I_37	270105,77	323841,04	1,10	3,05	3,00	39,15	17,8	18,6	12,5	426	40	20	0,38

Tab.4. 19 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona II

		P		- F	
Nr punktu	Współrzędne geograficzne ukł. 1992	Stężenie	Moc dawki (nGy/h)	Stężenie aktywności (Bq/kg)	f1

	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_II_1	270130,85	324430,15	1,16	2,99	4,33	42,75	15,2	17,0	10,8	363	37	18	0,33
S_II_2	270120,71	324427,10	1,25	2,73	4,10	42,05	16,3	15,5	10,2	391	34	17	0,33
S_II_3	270114,52	324422,69	1,16	2,54	2,56	35,99	15,2	14,4	6,4	363	31	10	0,28
S_II_4	270103,01	324417,32	1,12	2,84	5,03	43,37	14,6	16,1	12,5	351	35	20	0,34
S_II_5	270091,57	324416,87	1,44	3,61	4,85	51,36	18,8	20,5	12,1	451	45	20	0,40
S_II_6	270081,21	324410,61	1,29	2,43	4,28	41,31	16,9	13,8	10,7	404	30	17	0,32
S_II_7	270076,11	324406,59	1,19	3,30	5,32	47,61	15,6	18,7	13,3	372	41	22	0,37
S_II_8	270070,12	324399,33	1,46	2,37	5,48	46,16	19,1	13,4	13,7	457	29	22	0,36
S_II_9	270055,98	324399,57	1,08	2,17	4,95	38,85	14,1	12,3	12,3	338	27	20	0,30
S_II_10	270045,63	324389,68	1,26	2,65	5,49	45,23	16,5	15,0	13,7	394	33	22	0,35
S_II_11	270040,27	324390,28	1,11	2,86	6,25	46,33	14,5	16,2	15,6	347	35	25	0,36
S_II_12	270029,66	324381,45	1,55	2,17	6,15	47,95	20,3	12,3	15,3	485	27	25	0,38
S_II_13	270023,08	324381,94	1,05	2,30	4,08	37,00	13,7	13,1	10,2	329	28	17	0,29
S_II_14	270014,05	324372,44	1,06	2,02	3,95	35,21	13,9	11,5	9,9	332	25	16	0,27
S_II_15	269999,43	324367,04	1,25	3,28	5,04	47,46	16,3	18,6	12,6	391	41	20	0,37
S_II_16	269993,93	324368,57	1,43	3,24	6,45	53,11	18,7	18,4	16,1	448	40	26	0,41
S_II_17	269986,08	324360,25	1,23	2,78	4,18	42,33	16,1	15,8	10,4	385	34	17	0,33
S_II_18	269975,85	324353,28	1,30	2,63	4,76	43,82	17,0	14,9	11,9	407	32	19	0,34
S_II_19	269971,83	324346,94	1,76	3,02	7,73	59,41	23,0	17,1	19,3	551	37	31	0,46
S_II_20	269958,53	324348,93	0,96	2,72	5,47	41,68	12,6	15,4	13,6	300	34	22	0,32
S_II_21	269951,61	324336,22	1,34	3,40	7,75	56,10	17,5	19,3	19,3	419	42	31	0,44
S_II_22	269943,65	324337,88	1,23	3,15	4,49	45,18	16,1	17,9	11,2	385	39	18	0,35
S_II_23	269936,90	324333,31	1,30	3,07	6,89	51,59	17,0	17,4	17,2	407	38	28	0,40
S_II_24	269928,24	324329,53	1,39	3,00	7,68	54,43	18,2	17,0	19,2	435	37	31	0,42
S_II_25	269920,75	324327,21	1,73	3,55	7,57	61,71	22,6	20,1	18,9	541	44	31	0,48
S_II_26	269901,94	324320,67	1,39	2,71	5,68	47,68	18,2	15,4	14,2	435	33	23	0,37
S_II_27	269892,55	324325,56	1,28	2,25	4,47	40,64	16,7	12,8	11,1	401	28	18	0,32
S_II_28	269880,52	324315,82	1,03	2,20	4,93	38,23	13,5	12,5	12,3	322	27	20	0,30
S_II_29	269869,18	324318,80	0,99	2,45	3,75	36,28	12,9	13,9	9,4	310	30	15	0,28

Tab.4. 20 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona III

	Współrzędne geog	graficzne ukł. 1992		Stężenie	2	М	oc dawk	ti (nGy/h	ı)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_III_1	269971,94	324797,90	0,63	1,41	1,58	20,21	8,2	8,0	3,9	197	17	6	0,16
S_III_2	269962,50	324794,09	0,53	1,91	1,60	21,69	6,9	10,8	4,0	166	24	6	0,17
S_III_3	269953,16	324790,29	0,60	2,00	2,03	24,25	7,8	11,4	5,1	188	25	8	0,19

S_III_4	269946,59	324787,15	0,57	1,33	1,73	19,34	7,5	7,5	4,3	178	16	7	0,15
S_III_5	269935,41	324778,87	0,77	2,68	2,35	31,27	10,1	15,2	5,9	241	33	10	0,24
S_III_6	269923,06	324795,64	1,27	2,38	2,79	37,04	16,6	13,5	7,0	398	29	11	0,29
S_III_7	269914,26	324812,68	0,60	0,92	2,18	18,55	7,8	5,2	5,4	188	11	9	0,14
S_III_8	269906,16	324818,76	0,81	1,72	1,93	25,22	10,6	9,8	4,8	254	21	8	0,19
S_III_9	269897,24	324812,55	1,09	2,00	2,28	31,28	14,3	11,4	5,7	341	25	9	0,24
S_III_10	269892,24	324805,61	1,00	2,51	3,29	35,58	13,1	14,2	8,2	313	31	13	0,27
S_III_11	269880,19	324796,65	0,81	1,20	2,52	23,73	10,6	6,8	6,3	254	15	10	0,19
S_III_12	269870,73	324789,99	1,08	3,44	3,80	43,10	14,1	19,5	9,5	338	42	15	0,33
S_III_13	269865,13	324774,26	0,87	2,44	4,15	35,61	11,4	13,8	10,4	272	30	17	0,28
S_III_14	269860,35	324753,85	0,58	1,50	1,91	20,82	7,6	8,5	4,8	182	19	8	0,16
S_III_15	269852,19	324741,53	0,49	1,87	1,38	20,55	6,4	10,6	3,4	153	23	6	0,16
S_III_16	269845,26	324739,16	0,65	1,66	4,93	30,15	8,5	9,4	12,3	203	21	20	0,24
S_III_17	269835,53	324737,49	0,77	2,29	4,38	34,03	10,1	13,0	10,9	241	28	18	0,26
S_III_18	269824,83	324731,36	1,51	3,13	4,08	47,66	19,7	17,8	10,2	473	39	17	0,37
S_III_19	269804,29	324733,18	1,81	2,65	4,66	50,36	23,7	15,0	11,6	567	33	19	0,39
S_III_20	269807,69	324724,80	1,04	1,81	3,21	31,95	13,6	10,3	8,0	326	22	13	0,25
S_III_21	269797,63	324719,41	1,56	3,03	4,56	48,98	20,4	17,2	11,4	488	37	19	0,38
S_III_22	269790,06	324712,88	1,68	3,16	3,77	49,26	22,0	17,9	9,4	526	39	15	0,38
S_III_23	269779,66	324711,11	1,34	2,56	6,00	46,99	17,5	14,5	15,0	419	32	24	0,37
S_III_24	269771,56	324706,85	1,11	3,27	7,01	50,58	14,5	18,6	17,5	347	40	28	0,39
S_III_25	269761,32	324703,73	1,30	2,23	6,07	44,83	17,0	12,7	15,1	407	28	25	0,35
S_III_26	269754,29	324697,72	1,47	3,05	4,27	47,14	19,2	17,3	10,6	460	38	17	0,37
S_III_27	269744,96	324693,85	1,31	2,60	5,45	45,54	17,1	14,8	13,6	410	32	22	0,35
S_III_28	269733,83	324690,41	1,57	2,99	5,09	50,22	20,5	17,0	12,7	491	37	21	0,39
S_III_29	269725,92	324687,51	1,67	2,07	5,84	48,19	21,8	11,7	14,6	523	26	24	0,38
S_III_30	269717,24	324680,88	1,55	2,24	5,55	46,81	20,3	12,7	13,8	485	28	23	0,37
S_III_31	269707,81	324676,58	1,11	2,78	5,05	42,92	14,5	15,8	12,6	347	34	21	0,33
S_III_32	269697,76	324674,25	1,23	2,83	5,22	45,20	16,1	16,1	13,0	385	35	21	0,35
S_III_33	269690,88	324667,03	1,30	2,49	6,02	46,18	17,0	14,1	15,0	407	31	24	0,36
S_III_34	269680,74	324664,20	1,30	2,27	4,91	42,14	17,0	12,9	12,2	407	28	20	0,33
S_III_35	269670,99	324659,53	1,84	3,62	8,59	66,10	24,1	20,5	21,4	576	45	35	0,52
S_III_36	269662,23	324655,39	1,40	2,59	4,46	44,15	18,3	14,7	11,1	438	32	18	0,34

Tab.4. 21 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona IV

		<u> </u>		, ,	· ·			~			±		
	Współrzędne geog	graficzne ukł. 1992		Stężenie		M	oc dawk	ti (nGy/h	ı)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	Κ	eU	eTh	K	eU	eTh	

S_IV_1	269706,30	325109,88	1,05	2,26	2,55	32,89	13,7	12,8	6,4	329	28	10	0,25
S_IV_2	269695,15	325107,38	1,01	2,46	3,35	35,52	13,2	14,0	8,4	316	30	14	0,27
S_IV_3	269687,90	325101,08	0,81	2,10	3,04	30,09	10,6	11,9	7,6	254	26	12	0,23
S_IV_4	269677,11	325101,08	1,24	2,46	3,63	39,21	16,2	14,0	9,1	388	30	15	0,30
S_IV_5	269667,73	325098,84	1,57	2,40	3,51	42,85	20,5	13,6	8,8	491	30	14	0,33
S_IV_6	269659,33	325097,00	0,74	2,55	2,59	30,62	9,7	14,5	6,5	232	31	11	0,23
S_IV_7	269650,76	325093,79	1,33	1,86	4,34	38,74	17,4	10,6	10,8	416	23	18	0,30
S_IV_8	269638,24	325088,67	1,27	2,20	4,47	40,16	16,6	12,5	11,1	398	27	18	0,31
S_IV_9	269628,28	325087,27	1,41	2,88	4,09	45,03	18,4	16,3	10,2	441	36	17	0,35
S_IV_10	269618,26	325084,02	0,41	1,13	1,49	15,43	5,4	6,4	3,7	128	14	6	0,12
S_IV_11	269610,67	325081,34	1,09	2,44	2,86	35,27	14,3	13,8	7,1	341	30	12	0,27
S_IV_12	269601,85	325078,91	1,80	2,72	4,17	49,45	23,5	15,4	10,4	563	34	17	0,38
S_IV_13	269592,62	325075,47	1,81	3,41	5,36	56,33	23,7	19,4	13,4	567	42	22	0,44
S_IV_14	269583,89	325073,54	1,04	2,56	2,89	35,27	13,6	14,5	7,2	326	32	12	0,27
S_IV_15	269570,92	325072,19	2,19	2,69	3,61	52,84	28,6	15,3	9,0	685	33	15	0,41
S_IV_16	269561,57	325068,81	1,50	3,65	3,86	49,96	19,6	20,7	9,6	470	45	16	0,39
S_IV_17	269552,79	325065,24	1,27	2,60	4,60	42,83	16,6	14,8	11,5	398	32	19	0,33
S_IV_18	269543,97	325066,31	1,20	1,86	4,04	36,26	15,7	10,6	10,1	376	23	16	0,28

Tab.4. 22 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona V

	Współrzędne geog	graficzne ukł. 1992		Stężenie	•	Μ	oc dawk	i (nGy/h)	Stężenie	aktywnośc	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_V_1	269626,00	325460,30	1,82	2,35	5,01	49,58	23,8	13,3	12,5	570	29	20	0,39
S_V_2	269619,21	325457,08	2,01	3,04	4,15	53,94	26,3	17,3	10,4	629	38	17	0,42
S_V_3	269610,58	325452,31	1,10	2,10	5,36	39,63	14,4	11,9	13,4	344	26	22	0,31
S_V_4	269601,38	325447,94	1,01	2,54	3,22	35,61	13,2	14,4	8,0	316	31	13	0,28
S_V_5	269592,63	325443,30	1,29	2,76	3,87	42,15	16,9	15,7	9,7	404	34	16	0,33
S_V_6	269582,21	325438,61	0,86	2,24	3,54	32,81	11,2	12,7	8,8	269	28	14	0,25
S_V_7	269576,87	325435,37	1,25	2,48	3,15	38,28	16,3	14,1	7,9	391	31	13	0,30
S_V_8	269566,21	325431,38	1,04	2,19	2,84	33,05	13,6	12,4	7,1	326	27	12	0,26
S_V_9	269556,38	325429,06	1,06	2,31	3,14	34,80	13,9	13,1	7,8	332	29	13	0,27
S_V_10	269545,78	325423,22	0,86	2,92	2,64	34,44	11,2	16,6	6,6	269	36	11	0,26
S_V_11	269537,70	325418,67	1,27	2,63	3,55	40,36	16,6	14,9	8,9	398	32	14	0,31
S_V_12	269529,59	325414,84	0,55	2,21	0,81	21,74	7,2	12,5	2,0	172	27	3	0,16
S_V_13	269519,61	325410,66	1,17	2,62	3,95	40,06	15,3	14,9	9,9	366	32	16	0,31
S_V_14	269512,91	325404,45	1,04	2,15	3,23	33,86	13,6	12,2	8,1	326	27	13	0,26
S_V_15	269502,80	325400,62	1,04	2,01	2,83	32,10	13,6	11,4	7,1	326	25	11	0,25

S_V_16	269494,17	325399,13	0,75	1,82	3,89	29,79	9,8	10,3	9,7	235	22	16	0,23
S_V_17	269484,58	325393,11	0,55	2,97	3,52	32,87	7,2	16,9	8,8	172	37	14	0,25
S_V_18	269480,56	325390,12	0,16	1,29	0,68	11,10	2,1	7,3	1,7	50	16	3	0,08
S_V_19	269469,26	325388,82	0,19	1,20	1,12	12,04	2,5	6,8	2,8	59	15	5	0,09
S_V_20	269463,31	325380,21	1,69	2,08	4,27	44,62	22,1	11,8	10,6	529	26	17	0,35
S_V_21	269447,74	325376,56	0,83	2,17	2,82	30,24	10,9	12,3	7,0	260	27	11	0,23
S_V_22	269438,15	325373,89	1,75	4,28	6,18	62,57	22,9	24,3	15,4	548	53	25	0,48
S_V_23	269431,76	325368,62	1,71	4,11	4,32	56,41	22,4	23,3	10,8	535	51	18	0,44
S_V_24	269420,82	325366,33	1,04	2,27	3,81	36,03	13,6	12,9	9,5	326	28	15	0,28
S_V_25	269412,94	325359,01	1,57	2,85	4,88	48,91	20,5	16,2	12,2	491	35	20	0,38
S_V_26	269403,11	325356,69	1,58	2,84	4,08	46,90	20,7	16,1	10,2	495	35	17	0,36
S V 27	269401,15	325348,86	1,32	2,64	4,57	43,67	17,3	15,0	11,4	413	33	19	0,34

Tab.4. 23 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona VI

	Współrzędne geog	graficzne ukł. 1992		Stężenie	•	Mo	c dawki	(nGy/h)		Stężenie a	ktywności	(Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_VI_1	269486,76	325749,89	2,95	4,54	10,19	89,84	38,6	25,8	25,4	923	56	41	0,70
S_VI_2	269477,58	325748,02	2,82	6,27	10,58	98,83	36,9	35,6	26,4	883	77	43	0,77
S_VI_3	269467,84	325743,14	2,57	4,57	9,20	79,94	33,6	25,9	22,9	804	56	37	0,64
S_VI_4	269461,11	325741,49	2,73	4,99	10,19	89,41	35,7	28,3	25,4	854	62	41	0,70
S_VI_5	269446,15	325739,50	2,66	3,65	9,06	78,15	34,8	20,7	22,6	833	45	37	0,61
S_VI_6	269436,23	325740,10	2,64	5,09	9,88	86,72	34,5	28,9	24,6	826	63	40	0,69
S_VI_7	269430,51	325738,06	2,61	4,91	9,33	85,24	34,1	27,9	23,3	817	61	38	0,66
S_VI_8	269421,69	325732,42	1,61	3,55	5,79	55,70	21,1	20,1	14,4	504	44	24	0,43
S_VI_9	269408,57	325728,85	2,57	3,00	9,09	73,32	33,6	17,0	22,7	804	37	37	0,58
S_VI_10	269400,28	325726,94	2,31	3,18	7,42	66,74	30,2	18,0	18,5	723	39	30	0,52
S_VI_11	269388,71	325723,71	2,80	5,71	11,32	97,22	36,6	32,4	28,2	876	71	46	0,76
S_VI_12	269382,84	325732,93	3,35	5,21	13,56	107,15	43,8	29,6	33,8	1049	64	55	0,84
S_VI_13	269378,72	325733,22	2,91	6,73	12,68	107,75	38,1	38,2	31,6	911	83	51	0,84
S_VI_14	269372,29	325718,74	2,66	5,01	11,19	91,16	34,8	28,4	27,9	833	62	45	0,71
S_VI_15	269365,88	325714,04	2,97	4,55	13,04	97,24	38,8	25,8	32,5	930	56	53	0,76
S_VI_16	269359,42	325707,48	2,98	4,13	10,17	87,79	39,0	23,4	25,4	933	51	41	0,69
S_VI_17	269346,57	325699,21	2,60	4,75	11,57	89,78	34,0	27,0	28,9	814	59	47	0,70
S_VI_18	269337,76	325692,94	2,37	5,18	10,62	86,91	31,0	29,4	26,5	742	64	43	0,68
S_VI_19	269329,35	325688,17	2,65	3,86	10,38	82,41	34,7	21,9	25,9	829	48	42	0,65
S_VI_20	269319,51	325682,99	2,54	3,92	9,99	80,35	33,2	22,2	24,9	795	48	41	0,63
S_VI_21	269310,35	325687,40	3,15	6,59	17,18	121,40	41,2	37,4	42,8	986	81	70	0,95

S_VI_22	269308,55	325688,12	2,89	5,61	15,17	107,55	37,8	31,8	37,8	905	69	62	0,84
S_VI_23	269303,31	325684,89	4,52	7,03	14,90	136,14	59,1	39,9	37,2	1415	87	60	1,06
S_VI_24	269291,97	325678,02	3,70	5,54	14,98	117,15	48,4	31,4	37,4	1158	68	61	0,92
S_VI_25	269284,33	325666,58	2,94	4,54	10,64	90,76	38,4	25,8	26,5	920	56	43	0,71
S_VI_26	269274,10	325666,38	2,93	5,11	13,45	100,80	38,3	29,0	33,5	917	63	55	0,79
S_VI_27	269265,90	325662,05	3,28	4,99	15,06	108,81	42,9	28,3	37,6	1027	62	61	0,85
S_VI_28	269258,27	325657,37	2,97	5,15	13,23	101,14	38,8	29,2	33,0	930	64	54	0,79
S_VI_29	269249,28	325653,30	2,77	4,91	11,88	93,65	36,2	27,9	29,6	867	61	48	0,73

Tab.4. 24 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona VII

	Współrzędne geog	graficzne ukł. 1992		Stężenie	;	M	oc dawk	i (nGy/h)	Stężenie	aktywnośc	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_VII_1	269207,97	326190,10	2,13	4,65	6,54	70,47	27,9	26,4	16,3	667	57	27	0,55
S_VII_2	269201,03	326188,02	2,40	3,87	6,49	69,47	7,7	18,1	6,7	185	39	11	0,25
S_VII_3	269189,04	326183,77	1,56	3,52	4,60	51,84	28,0	31,4	19,5	670	68	32	0,61
S_VII_4	269180,73	326179,29	1,03	2,64	4,97	40,83	24,7	25,9	15,2	592	56	25	0,51
S_VII_5	269174,41	326171,88	0,68	2,29	2,16	27,35	25,1	25,1	17,2	601	55	28	0,52
S_VII_6	269165,00	326170,29	1,98	5,84	5,33	72,27	23,4	29,1	14,4	560	63	23	0,51
S_VII_7	269153,32	326163,42	0,93	2,50	3,52	35,19	27,5	22,6	18,0	657	49	29	0,53
S_VII_8	269145,81	326158,32	0,79	1,98	2,69	28,32	28,1	27,8	15,3	673	61	25	0,55
S_VII_9	269143,17	326154,17	1,84	3,72	6,18	60,54	28,2	32,7	21,1	676	71	34	0,63
S_VII_10	269141,10	326149,47	0,59	3,19	2,67	32,49	27,5	31,8	17,2	657	69	28	0,59
S_VII_11	269133,54	326145,80	2,14	5,53	7,80	78,76	31,0	24,4	18,5	742	53	30	0,57
S_VII_12	269124,60	326136,73	1,89	4,57	6,11	65,89	31,4	22,0	16,2	751	48	26	0,54
S_VII_13	269117,56	326131,08	1,92	4,43	6,90	67,69	24,3	20,0	10,6	582	43	17	0,43
S_VII_14	269112,79	326123,72	1,79	5,13	5,76	66,85	22,1	26,4	11,6	529	58	19	0,46
S_VII_15	269106,74	326114,75	2,10	3,99	7,20	68,11	24,5	17,1	15,5	585	37	25	0,44
S_VII_16	269100,83	326105,22	2,15	4,90	6,13	71,18	20,9	20,5	8,9	501	45	15	0,39
S_VII_17	269092,01	326095,87	2,16	5,77	8,47	82,17	20,4	20,0	11,5	488	43	19	0,40
S_VII_18	269093,90	326085,73	2,10	5,60	6,88	76,37	13,5	15,0	12,4	322	33	20	0,32
S_VII_19	269087,65	326076,26	2,37	4,30	7,42	73,88	8,9	13,0	5,4	213	28	9	0,21
S_VII_20	269081,30	326069,56	1,86	3,52	4,25	54,90	25,9	33,1	13,3	620	72	22	0,56
S_VII_21	269076,20	326062,26	1,69	4,66	4,65	60,18	12,2	14,2	8,8	291	31	14	0,27
S_VII_22	269072,62	326049,23	1,87	3,01	6,20	57,06	10,3	11,2	6,7	247	24	11	0,22
S_VII_23	269065,58	326039,94	1,60	3,61	3,58	50,30	24,1	21,1	15,4	576	46	25	0,47

	Współrzędne geog	graficzne ukł. 1992		Stężenie		Мо	c dawki	(nGy/h)		Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_VIII_1	269011,73	325521,75	1,57	2,83	8,31	57,38	20,5	16,1	20,7	491	35	34	0,45
S_VIII_2	269001,70	325518,86	2,25	4,28	8,90	75,86	29,4	24,3	22,2	704	53	36	0,59
S_VIII_3	268992,80	325515,35	3,02	5,64	13,05	104,10	39,5	32,0	32,5	945	70	53	0,81
S_VIII_4	268980,53	325516,38	2,35	4,62	11,28	85,12	30,7	26,2	28,1	736	57	46	0,66
S_VIII_5	268972,77	325508,92	2,88	5,57	13,50	102,90	37,7	31,6	33,7	901	69	55	0,80
S_VIII_6	268964,74	325502,52	2,62	4,43	13,16	92,25	34,3	25,1	32,8	820	55	53	0,72
S_VIII_7	268953,19	325501,86	2,75	5,87	13,43	102,77	36,0	33,3	33,5	861	72	55	0,80
S_VIII_8	268944,88	325500,94	3,05	5,06	13,41	102,05	39,9	28,7	33,4	955	62	54	0,80
S_VIII_9	268933,14	325495,78	1,88	3,42	8,62	65,49	24,6	19,4	21,5	588	42	35	0,51
S_VIII_10	268926,48	325495,41	2,39	5,02	9,56	83,57	31,3	28,5	23,8	748	62	39	0,65
S_VIII_11	268913,98	325496,64	2,61	4,48	11,31	87,71	34,1	25,4	28,2	817	55	46	0,69
S_VIII_12	268904,21	325492,68	2,33	4,64	8,74	78,59	30,5	26,3	21,8	729	57	35	0,61
S_VIII_13	268895,30	325489,54	2,59	5,14	11,99	92,90	33,9	29,2	29,9	811	63	49	0,73
S_VIII_14	268884,08	325492,45	2,73	5,36	12,12	96,44	35,7	30,4	30,2	854	66	49	0,75
S_VIII_15	268875,75	325485,12	2,46	4,84	10,42	85,68	32,2	27,5	26,0	770	60	42	0,67
S_VIII_16	268865,99	325484,29	2,42	6,01	10,08	90,94	31,6	34,1	25,1	757	74	41	0,70
S_VIII_17	268858,45	325480,20	2,74	6,64	13,07	106,12	35,8	37,7	32,6	858	82	53	0,82
S_VIII_18	268846,69	325478,95	2,76	7,81	13,81	114,83	36,1	44,3	34,4	864	96	56	0,89
S_VIII_19	268837,36	325475,22	2,50	7,21	11,42	102,08	32,7	40,9	28,5	783	89	46	0,79
S_VIII_20	268829,93	325471,20	2,72	5,72	13,54	101,76	35,6	32,5	33,8	851	71	55	0,79
S_VIII_21	268822,61	325467,03	2,87	5,37	11,20	95,98	37,5	30,5	27,9	898	66	45	0,75
S_VIII_22	268811,59	325463,89	2,42	3,60	9,06	74,59	31,6	20,4	22,6	757	44	37	0,58
S_VIII_23	268800,45	325460,96	2,31	3,51	8,57	71,50	30,2	19,9	21,4	723	43	35	0,56
S_VIII_24	268791,42	325458,02	2,43	3,61	8,23	72,99	31,8	20,5	20,5	761	45	33	0,57
S_VIII_25	268783,45	325453,55	1,97	4,26	7,19	67,89	25,8	24,2	17,9	617	53	29	0,53

Tab.4. 25 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona VIII

Tab.4. 26 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona IX

	Współrzędne geog	graficzne ukł. 1992		Stężenie		Μ	oc dawk	i (nGy/h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
S_IX_1	268850,43	325886,68	2,23	2,81	6,13	60,38	29,2	15,9	15,3	698	35	25	0,47
S_IX_2	268841,97	325887,04	2,19	2,91	6,02	60,16	32,3	23,6	18,7	773	51	30	0,58
S_IX_3	268831,09	325893,04	2,29	2,67	6,13	60,40	25,0	15,8	14,0	598	34	23	0,43
S_IX_4	268821,49	325894,00	2,17	3,40	6,39	63,58	31,5	20,6	21,9	754	45	36	0,58

S_IX_5	268812,80	325897,64	2,65	3,97	8,17	77,59	34,9	21,1	19,8	836	46	32	0,59
S_IX_6	268804,27	325900,07	2,38	3,36	7,70	69,37	34,3	28,7	19,9	820	62	32	0,64
S_IX_7	268794,60	325902,96	2,30	4,44	8,52	76,53	32,0	24,1	18,5	767	52	30	0,58
S_IX_8	268786,17	325912,60	2,63	4,05	7,97	77,29	32,6	21,1	21,7	779	46	35	0,59
S_IX_9	268778,63	325918,49	2,38	3,85	8,19	73,44	36,2	26,6	24,0	867	58	39	0,68
S_IX_10	268767,63	325917,91	2,47	4,16	7,51	74,71	28,6	16,5	15,0	685	36	24	0,47
S_IX_11	268759,56	325923,35	1,91	2,79	5,60	57,22	29,9	15,2	15,3	717	33	25	0,47
S_IX_12	268750,84	325927,78	2,41	3,63	8,78	74,00	28,4	19,3	15,9	679	42	26	0,50
S_IX_13	268740,39	325931,00	2,67	3,72	7,92	75,77	34,7	22,5	20,4	829	49	33	0,61
S_IX_14	268731,67	325935,56	2,62	5,06	7,98	82,89	31,1	19,1	19,2	745	41	31	0,54
S_IX_15	268722,13	325941,74	2,45	4,25	7,43	74,65	30,1	25,2	21,2	720	55	35	0,60
S_IX_16	268714,19	325946,12	2,49	3,72	8,71	75,36	34,4	23,0	19,9	823	50	32	0,60
S_IX_17	268702,24	325954,50	2,77	4,69	9,63	86,86	31,1	21,8	20,4	745	48	33	0,57

Tab.4. 27 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Spalona X

	Współrzędne geog	graficzne ukł. 1992		Stężenie		M	oc dawk	i (nGy/h)	Stężenie	aktywnośc	i (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	Κ	eU	eTh	
S_X_1	267753,92	325810,75	2,27	3,98	8,74	74,11	29,7	22,6	21,8	711	49	35	0,58
S_X_2	267741,02	325813,97	2,19	3,91	9,83	75,32	31,3	22,3	25,0	748	49	41	0,61
S_X_3	267729,81	325813,24	2,10	2,74	8,03	63,09	30,7	23,9	24,2	736	52	39	0,62
S_X_4	267717,19	325814,83	2,37	3,94	8,36	74,21	29,7	23,4	19,3	711	51	31	0,56
S_X_5	267708,03	325815,81	1,82	3,12	6,18	56,97	30,3	18,9	17,4	726	41	28	0,52
S_X_6	267696,24	325818,99	2,03	3,73	7,01	65,26	30,3	21,8	16,9	726	48	27	0,54
S_X_7	267686,99	325819,68	2,35	4,08	7,76	73,23	33,6	22,2	22,9	804	48	37	0,62
S_X_8	267678,65	325819,55	3,19	4,27	9,92	90,65	25,9	18,3	18,1	620	40	30	0,49
S_X_9	267671,05	325823,94	2,43	5,12	7,47		21,1	17,9	16,2	504	39	26	0,43
S_X_10	267659,18	325822,91	2,39	3,93	10,04	79,43	23,3	15,9	17,8	557	35	29	0,45
S_X_11	267650,47	325823,77	2,35	4,22	9,70	78,52	14,5	7,8	6,5	347	17	11	0,23
S_X_12	267641,68	325823,76	2,27	4,12	7,72	72,25	28,6	22,2	24,5	685	48	40	0,59
S_X_13	267630,65	325827,68	2,32	3,33	6,99	66,65	27,5	17,3	16,6	657	38	27	0,48
S_X_14	267622,12	325826,47	2,32	3,85	6,76	69,02	34,7	20,2	18,7	829	44	30	0,57
S_X_15	267614,80	325826,02	2,57	3,92	9,20	78,73	33,3	21,9	20,2	798	48	33	0,59
S_X_16	267607,42	325827,06	1,98	3,22	7,27	62,25	27,5	20,0	17,4	657	43	28	0,51
S_X_17	267597,48	325828,23	1,61	3,15	6,51	55,21	30,7	20,4	23,8	736	44	39	0,59
S_X_18	267587,69	325831,48	1,78	2,81	7,15	57,12	27,9	23,4	17,7	667	51	29	0,54
S_X_19	267580,23	325835,09	1,11	1,38	2,60	28,81	32,0	21,8	20,1	767	48	33	0,58
S_X_20	267573,14	325837,64	2,10	3,04	6,67	61,23	35,6	25,0	20,7	851	54	34	0,63

S_X_21	267561,96	325839,27	2,65	3,56	7,48	73,54	27,5	15,5	20,0	657	34	33	0,49
S_X_22	267551,07	325842,12	2,55	3,86	8,10	75,50	31,0	22,4	20,8	742	49	34	0,58
S_X_23	267544,73	325845,48	2,10	3,52	6,99	64,86	23,8	17,7	15,4	570	39	25	0,44
S_X_24	267537,86	325847,96	2,35	3,59	9,55	72,43	26,5	21,2	17,5	635	46	28	0,51
S_X_25	267526,70	325855,87	2,13	4,13	7,10	69,00	30,7	23,2	19,4	736	50	32	0,57
S_X_26	267519,30	325861,05	2,45	3,85	8,04	74,01	41,7	24,2	24,7	998	53	40	0,71
S_X_27	267510,23	325866,25	2,72	4,40	8,30	81,11	31,8	29,1	18,6	761	63	30	0,62

Tab.4. 28 Lokalizacja punktów pomiarowych oraz wyniki pomiarów radiometrycznych wzdłuż profilu Różanka-Międzylesie

	Współrzędne geog	graficzne ukł. 1992		Stężenie	:	M	loc daw	ki (nGy/l	h)	Stężenie	aktywnośc	ci (Bq/kg)	f1
Nr punktu	X [m]	Y [m]	K [%]	eU [ppm]	eTh [ppm]	DR	K	eU	eTh	K	eU	eTh	
ML01	257851,34	331634,54	1,3	2,0	6,1	44,0	17,0	11,4	15,2	407	25	25	0,34
ML02	257849,49	331626,53	1,1	1,8	6,1	41,3	14,4	10,2	15,2	344	22	25	0,31
ML03	257846,84	331615,22	1,2	1,8	6,4	43,3	15,7	10,2	16,0	376	22	26	0,33
ML04	257843,36	331602,05	1,1	2,2	7,1	45,9	14,4	12,5	17,7	344	27	29	0,35
ML05	257841,62	331593,32	1,3	1,9	7,8	48,9	17,0	10,8	19,5	407	23	32	0,37
ML06	257839,17	331583,40	1,1	1,9	6,1	40,5	14,4	10,8	15,2	344	23	25	0,32
ML07	257836,26	331573,25	1,1	2,1	6,5	43,2	14,4	11,9	16,2	344	26	26	0,33
ML08	257832,10	331564,04	1,0	1,5	6,2	38,1	13,1	8,5	15,5	313	19	25	0,29
ML09	257829,84	331555,29	1,1	1,9	6,5	42,2	14,4	10,8	16,2	344	23	26	0,32
ML10	257827,33	331545,03	1,2	1,9	7,1	45,3	15,7	10,8	17,7	376	23	29	0,35
ML11	257825,39	331533,60	1,1	1,9	7,7	44,6	14,4	10,8	19,2	344	23	31	0,35
ML12	257823,62	331525,12	1,1	1,7	7,0	42,6	14,4	9,6	17,5	344	21	28	0,33
ML13	257821,47	331513,18	1,1	1,9	6,4	42,4	14,4	10,8	16,0	344	23	26	0,32
ML14	257819,91	331504,95	1,1	1,7	6,5	40,5	14,4	9,6	16,2	344	21	26	0,32
ML15	257817,84	331495,37	1,1	1,6	6,3	39,8	14,4	9,1	15,7	344	20	26	0,31
ML16	257815,29	331483,40	1,0	1,7	6,7	41,1	13,1	9,6	16,7	313	21	27	0,31
ML17	257813,82	331475,63	1,1	1,5	7,6	43,4	14,4	8,5	19,0	344	19	31	0,33
ML18	257812,10	331464,86	1,1	1,7	6,3	40,4	14,4	9,6	15,7	344	21	26	0,31
ML19	257809,41	331454,98	1,1	1,7	5,8	38,7	14,4	9,6	14,5	344	21	24	0,30
ML19A	257810,42	331451,08	0,9	1,4	6,3	36,9	11,8	7,9	15,7	282	17	26	0,28
ML19B	257807,25	331449,34	1,0	1,6	5,8	37,7	13,1	9,1	14,5	313	20	24	0,29
ML20	257807,47	331445,99	1,0	1,6	6,0	37,7	13,1	9,1	15,0	313	20	24	0,29
ML21	257806,04	331437,90	1,1	1,6	7,2	42,3	14,4	9,1	18,0	344	20	29	0,33
ML22	257804,98	331428,38	1,1	1,6	6,9	42,2	14,4	9,1	17,2	344	20	28	0,32
ML23	257803,40	331416,34	1,1	1,5	7,7	43,5	14,4	8,5	19,2	344	19	31	0,33
ML24	257802,34	331408,59	1,1	1,4	7,0	41,6	14,4	7,9	17,5	344	17	28	0,31

ML25	257801,17	331399,80	1,1	1,5	6,2	39,2	14,4	8,5	15,5	344	19	25	0,30
ML26	257799,59	331390,17	1,2	1,4	6,4	40,3	15,7	7,9	16,0	376	17	26	0,31
ML27	257798,00	331379,91	1,0	1,0	5,8	36,0	13,1	5,7	14,5	313	12	24	0,26
ML28	257796,74	331370,11	0,8	0,8	5,5	32,2	10,5	4,5	13,7	250	10	22	0,23