3. Badania magnetotelluryczne wraz z interpretacją geofizyczną i geologiczną

3.1. Wprowadzenie do wykonanych badań

Prace terenowe przeprowadzono przy użyciu przyrządów pomiarowych, zakupionych u renomowanych producentów sprzętu geofizycznego (systemy magnetotelluryczne firmy Phoenix Geophysics Ltd.). Do prac obliczeniowych i interpretacyjnych wykorzystano specjalistyczne, nowoczesne oprogramowanie (pakiety programów), stosowane w Przedsiębiorstwie Badań Geofizycznych (PBG), m.in. SSMT2000, MT-Editor (Phoenix Geophysics Ltd) a także WinGLink (Geosystem Srl). Prace terenowe zrealizowała krakowska grupa pomiarowa PBG. Przetwarzanie i skatalogowanie danych pomiarowych oraz opracowanie map lokalizacyjnych oraz przekrojów geofizycznych, a także raport opracowano w PBG w Krakowie.

3.2. Cel prac

Celem prac magnetotellurycznych na terenie Dolnego Śląska było rozpoznanie uwarunkowań geologiczno-strukturalnych i hydrogeologicznych potencjalnych wystąpień wód termalnych do głębokości rzędu 2-4 km, metodą ciągłego profilowania magnetotellurycznego (CPMT) w paśmie częstotliwości AMT z rozszerzeniem o pasmo MT do częstotliwości min 0.01 Hz, ze zmiennym krokiem pomiarowym: od 50 m w strefach występowania młodych dyslokacji do 100 – 200 m na skrajnych odcinkach profili.

3.3. Dotychczasowe badania geofizyczne

Na przestrzeni kilkudziesięciu lat Przedsiębiorstwo Badań Geofizycznych wykonało szereg badań geofizycznych, które zostały udokumentowane w sprawozdaniach i dokumentacjach szczegółowych oraz półszczegółowych z prac magnetotellurycznych, grawimetrycznych i magnetycznych:

- Sudety i blok przedsudecki (badania grawimetryczne) część wschodnia, Okulus H., 1968;
- Blok przedsudecki, rejon Strzelina (badania grawimetryczne i magnetyczne), Cieśla E., Margul B., 1972;
- Sudety, rejon Kłodzka i Węglińca-Zgorzelca (badania grawimetryczne), Okulus H., Margul B., Kleszcz T.,1974;
- Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego część zachodnia. Podstawowe mapy geofizyczne w skali 1:50 000 i 1:200 000 /wg stanu badań na rok 1981/. Temat: Sudety Zachodnie, 1980 83. Arkusze 1:200 000: Gubin, Zielona Góra, Bogatynia, Jelenia Góra, Leszno, Wałbrzych , J. Grodnicki, T. Kruczek, A. Soćko + zespół, 1983;
- Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część zachodnia. Rejon: Blok karkonosko-izerski i Góry Kaczawskie, S. Bachnacki, A. Soćko, 1984;

- Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część zachodnia. Mapy geofizyczne. Temat: Sudety Zachodnie, 1980-1985, A. Pepel + zespół, 1985;
- Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część wschodnia. Sudety Wschodnie, 1986-1990 r. Tom I, Podstawowe mapy geofizyczne H. Jakubiak, J. Nowak, A. Soćko, B. Zdziarska, 1988;
- Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część wschodnia. Mapy geofizyczne transformowane. Temat: Sudety Wschodnie, 1986-1990. Tom II, H. Jakubiak, J. Nowak, A. Soćko, B. Zdziarska, 1989;
- Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część wschodnia. Sudety wschodnie, 1986-1990. Tom III. Kompleksowa interpretacja geofizyczno-geologiczna, A. Soćko, H. Jakubiak, 1990;
- Sudety, Kosobudzka I., Wrzeszcz M., 2007;

Duża część tych opracowań pochodzi z lat sześćdziesiątych, siedemdziesiątych i osiemdziesiątych ubiegłego stulecia, a więc dokładność pomiarów terenowych i prac processingowych stała na niższym poziomie w stosunku do wykonywanych obecnie.

W ramach badań magnetotellurycznych na obszarze Sudetów PBG wykonało dokumentację badań geofizycznych temat: "Rozpoznanie złóż wód termalnych w rejonie Polanicy Zdroju" J. Farbisz, E. Farbisz, M. Stefaniuk, 2001 r. Badania te sprowadzały się do rozpoznawania stref tektonicznych przecinających skały krystaliczne, a nadrzędnym ich celem było rozpoznanie warunków hydrotermalnych. Strefy tektoniczne w wysokooporowych kompleksach krystalicznych wiążą się z reguły z obniżeniem oporności związanym z filtracją wód w systemach szczelin przyuskokowych. Badania powyższe miały charakter szczegółowy, co uzasadniało zastosowanie magnetotellurycznego profilowania ciągłego. W rejonie Polanicy Zdrój prace pomiarowe wykonane zostały w wersji ciągłych profilowań AMT/MT za pomocą systemu pomiarowego MT-1.

W 2008 r. opracowano "Dokumentację badań geofizycznych metodą Ciągłego Profilowania Magnetotellurycznego (CPMT) wykonanych w rejonie Lądka Zdroju w celu głębokiego rozpoznania stref tektonicznych dla potrzeb określenia perspektyw występowania wód geotermalnych", J. Farbisz, M. Wojdyła. Wyniki badań przedstawione zostały w postaci pseudo2D przekrojów głębokościowych oporności opracowanych na podstawie inwersji 1D wg algorytmu Occama (Constable i in. 1987). Kontrasty opornościowe w warunkach geologicznych rejonu Lądka-Zdroju powiązane zostały ze zróżnicowaniem litologicznym serii skalnych, wysokooporowych gnejsów i niżejoporowych łupków metamorficznych oraz zjawiskami tektonicznymi. Typowym objawem zjawisk tektonicznych jest obniżenie wartości oporności elektrycznej związane z procesami spękania i wietrzenia skał, krążenia wód podziemnych (w tym geotermalnych) i często występowaniem mineralizacji rudnych. Wyeksponowane zostały odcinki o intensywnym zeszczelinowaniu stref uskokowych powiązane z anomalnie obniżonymi

wartościami oporności o wysokim prawdopodobieństwie występowania wód geotermalnych, szczególnie na większych głębokościach. Wyniki tych badań posłużyły do wyznaczenia dwóch lokalizacji głębokich wierceń dla potrzeb ujęcia wód geotermalnych. Akwizycja danych magnetotellurycznych wykonana została z zastosowaniem nowoczesnego systemu 2000.net kanadyjskiej firmy Phoenix Geophysics Limited. Najbardziej aktualne badania geofizyczne w rejonie Dolnego Śląska wykonane zostały przez Przedsiębiorstwo Badań Geofizycznych Sp. z o.o. w 2017 r. na zlecenie Państwowego Instytutu Geologicznego - Państwowego Instytutu Badawczego (PIG-PIB) w ramach zadania geologicznego realizowanego przez PIG-PIB pt. "Młode strefy tektoniczne a warunki geotermalne w Sudetach w świetle badań geochronologicznych, strukturalnych i termometrycznych – Etap 1", ukierunkowane one były na rozpoznanie uwarunkowań geologiczno-strukturalnych i hydrogeologicznych do głębokości rzędu 2-3 km, metodą ciągłego profilowania magnetotellurycznego (CPMT) w paśmie częstotliwości AMT z rozszerzeniem o pasmo MT. Wyniki badań przedstawione zostały w Raporcie z "Badań magnetotellurycznych (w rejonie Ciepłowód k. Ziębic) wzdłuż dwóch linii profilowych o łącznej długości 3,6 km". W ramach prac interpretacyjnych wykonano inwersję w oparciu o algorytm 1D wg Occama zaimplementowany do systemu interpretacyjnego WinGLink, jak również inwersję 2D z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient). Rejestracja danych magnetotellurycznych wykonana została z zastosowaniem systemu 2000.net kanadyjskiej firmy Phoenix Geophysics Limited.

3.4. Lokalizacja obszaru prac

Obszar prac położony jest w województwie dolnośląskim. Poszczególne profile znajdują się na terenach niżej podanych powiatów i gmin (Fig. 3.4.1):

profil Bystrzyca Kłodzka	powiat: kłodzki;	gmina: Bystrzyca Kłodzka,
profil Głuszyca	powiat: wałbrzyski;	gmina: Głuszyca,
profil Książnica	powiat: dzierżoniowski, świdnicki;	gmina: Dzierżoniów, Marcinowice, Świdnica,
profil Kudowa	powiat: kłodzki;	gmina: Kudowa-Zdrój, Lewin Kłodzki,
profil Nagórnik	powiat: jaworski, kamiennogórski;	gmina: Bolków, Marciszów,
profil Niedamirów	powiat: kamiennogórski;	gmina: Lubawka,
profil Pławna	powiat: lwówecki;	gmina: Lubomierz,
profil Srebrna Góra	powiat: ząbkowicki;	gmina: Stoszowice,
profil Stara Łomnica	powiat: kłodzki;	gmina: Bystrzyca Kłodzka,
Kłodzko,		
profil Wierzchosławice	powiat: jaworski;	gmina: Bolków,
profil Złotoryja	powiat: jaworski, złotoryjski;	gmina: Męcinka, Złotoryja.

Zgodnie z podziałem na jednostki fizyczno-geograficzne (Kondracki, 1998) omawiany obszar należy do prowincji Masyw Czeski i podprowincji Sudety z Przedgórzem Sudeckim. Tylko niewielki, północny fragment profilu Złotoryja znajduje się w obrębie podprowincji Nizina Śląsko-Łużycka.

Poszczególne profile położone są w rejonie następujących makro- i mezoregionów:

- Nizina Śląsko-Łużycka:
 - Równina Chojnowska profil: Złotoryja,

_

- Pogórze Zachodniosudeckie:
 - Pogórze Izerskie
 - Pogórze Kaczawskie
 - Pogórze Wałbrzyskie
- Sudety Zachodnie:
- Karkonosze –
- Sudety Środkowe:

_

_

- Brama Lubawska
- Góry Bystrzyckie
- Góry Sowie
- Góry Stołowe

Kotlina Kłodzka

- Góry Wałbrzyskie
- profil: Bystrzyca Kłodzka,
- profile: Głuszyca, Srebrna Góra,
- profil: Kudowa,
 - profile: Nagórnik, Wierzchosławice,
 - profile: Bystrzyca Kłodzka, Stara Łomnica,
- Obniżenie Nowej Rudy
 - dy profil: Głuszyca, - profil: Kudowa,
 - Pogórze Orlickie profil: Kudo
- Przedgórze Sudeckie:
 - Masywu Ślęży profil: Książnica,
 - Równina Świdnicka profil: Książnica.

Poniższa tabela zawiera wykaz punktów pomiarowych wykonanych na poszczególnych profilach.

Tabela 3.1. Wykaz punktów pomiarowych

	Współrzędne geograficzne Wgs84		Współrzędne prostokątne układ 1992		
nr pkt-u	długość geograficzna λ	szerokość geograficzna φ	x [m]	y [m]	Wysokość h [m]
	•		•		
BK_1	16,58555555	50,3036945	328117,21	273512,68	455
BK_2	16,58663889	50,30427783	328196,43	273575,01	510
BK_3	16,58783333	50,30466672	328282,85	273615,48	502
BK_4	16,58897222	50,30513894	328365,62	273665,33	531
BK_5	16,59013889	50,30572228	328450,76	273727,47	519
BK_6	16,59125	50,30627783	328531,84	273786,66	507
BK_7	16,59247222	50,30672228	328620,44	273833,24	475
BK_8	16,59336111	50,30711116	328685,1	273874,41	449
BK_9	16,59469444	50,30772228	328782,2	273939,26	446
BK_10	16,59594444	50,30836116	328873,46	274007,39	474
BK_11	16,59652778	50,30863894	328915,98	274036,92	502
BK_12	16,59691667	50,30886116	328944,46	274060,73	492
BK_13	16,59747222	50,30911116	328984,89	274087,23	520
BK_14	16,59816667	50,3089445	329033,72	274067,11	501
BK_15	16,59877778	50,30952783	329079,31	274130,54	502
BK_16	16,59938889	50,30997227	329124,4	274178,53	498
BK_17	16,60044444	50,31050005	329201,42	274234,77	488
BK_18	16,60144444	50,31088894	329273,98	274275,69	466

- prom. Ziotoryja,
- profil: Pławna,
- profil: Złotoryja,
 - profile: Nagórnik, Wierzchosławice,
 - profil: Niedamirów,

profil: Niedamirów,

BK 19	16 60263889	50 31152783	329361 28	274343 96	450
BK 20	16 60377778	50,31200005	329444 02	274393,50	430
BK 21	16,00377778	50,312500005	329509 17	274353,05	/38
BK 22	16 60677778	50 3129///5	329660.91	274450,45	430
BK 23	16 6075	50,3125445	329714 39	274451,55	426
BK 2/	16 60847222	50,31332783	329785.86	274555,1	420
Z4	10,00047222	1_GL_18 (G	323783,80	274023,05	425
CL 1	16 2715		21/2/2 /2	215201 42	501
	16 272/7222	50,07505505	21//12 51	215220 12	501
	16,37247222	50,67663896	21/5/8 76	215/70 21	303 /01
	16 275 82222	50,67661110	21/65/ 58	315470,31	491
	16 27647222	50,67686119	314034,38	315403,40	485
	16,37047222	50,6772223	21/770 77	215527.25	470
	16,37744444	50,67750007	314818 94	315556 55	464
	16 38186111	50,67844452	315087.48	315652 15	487
	16 38297222	50,67880563	315167.36	315689 5	487
GL 10	16 38394444	50,67944452	315238 52	315758.08	509
GL 11	16 38438889	50,67988896	315271.66	315806 37	517
GL 12	16 38505555	50,6802223	315320.04	315841 76	523
GL 13	16 38569444	50 68050007	315366.25	315871.03	529
GL_13	16 38613889	50,68069452	315398 39	315891 54	534
GL 15	16 38713889	50,680003452	315470.97	315944 61	546
GL 16	16 38858333	50,68211118	315576 56	316042.89	560
GL_10	16 38916666	50,68263896	315619.82	316100 1	559
GL 18	16.39022222	50.6832223	315696.64	316162.3	585
GL 19	16.39161111	50.68336118	315795.26	316174.28	594
GL 20	16.39288889	50.68380563	315887.22	316220.5	636
GL 21	16.39411111	50.68438896	315975.81	316282.29	655
 GL 22	16,39502778	50,68502785	316043,03	316351,02	659
GL 23	16,39611111	50,68541674	316121,04	316391,55	689
GL_24	16,39719444	50,68597229	316199,71	316450,6	696
GL_25	16,39786111	50,68611118	316247,32	316464,39	683
GL_26	16,39836111	50,68644452	316283,93	316500,19	697
GL_27	16,40022222	50,68783341	316420,76	316649,94	687
		1-KS-18 (Ks	įążnica)		
KS_01	16,59083333	50,79777783	330276,93	328414,38	240
KS_02	16,59144444	50,79872228	330323,4	328517,95	239
KS_03	16,59194444	50,7994445	330361,24	328597,07	239
KS_04	16,59244444	50,80022228	330399,27	328682,37	238
KS_05	16,59286111	50,80108339	330431,74	328777,12	241
KS_06	16,59322222	50,80188894	330460,09	328865,83	239
KS_07	16,59363889	50,80286116	330492,96	328972,93	239
KS_08	16,59419444	50,80363894	330534,9	329058,11	239
KS_09	16,59472222	50,8044445	330574,99	329146,43	240
KS_10	16,59519444	50,80530561	330611,36	329241,06	237
KS_11	16,59577778	50,80613894	330655,46	329332,35	239
KS_12	16,59630555	50,8069445	330695,54	329420,67	245
KS_13	16,59683333	50,8076945	330735,42	329502,82	243
KS_14	16,59738889	50,80850005	330777,46	329591,09	243
KS_15	16,59886111	50,80925005	330883,85	329671,08	246
KS_16	16,59866667	50,81030561	330873,97	329788,84	248
KS_17	16,59913889	50,8109445	330909,53	329858,77	248
KS_18	16,59963889	50,8116945	330947,45	329940,99	251
KS_19	16,60013889	50,81305561	330987,57	330091,13	253
KS_20	16,60033333	50,81355561	331003,07	330146,26	255
KS_21	16,60133333	50,81402783	331075,19	330196,46	259
KS_22	10,00155555	50,81438894	331092,14	330236,09	255

KS_23	16,60172222	50,81480561	331105,38	330282,02	262
KS_24	16,60188889	50,8151945	331118,52 330324,86		263
KS_25	16,60216667	50,81563894	331139,69	330373,62	259
KS_26	16,60236111	50,81611116	331155,08	330425,66	256
KS_27	16,60266667	50,81647227	331177,9	330465,1	268
KS_28	16,60283333	50,81691672	331191,24	330514,12	272
KS_29	16,60302778	50,81736116	331206,53	330563,08	276
KS_30	16,60319444	50,81780561	331219,87	330612,09	277
KS_31	16,60336111	50,81827783	331233,31	330664,2	281
KS_32	16,60355555	50,81875005	331248,7	330716,24	286
KS_33	16,60369444	50,81922227	331260,18	330768,41	289
KS_34	16,60383333	50,8196945	331271,66	330820,58	309
KS_35	16,60402778	50,82041672	331287,96	330900,41	352
KS_36	16,604	50,82136116	331289,41	331005,44	334
KS_37	16,60425	50,82211116	331309,71	331088,23	307
KS_38	16,60452778	50,82311116	331332,87	331198,75	277
KS_39	16,60488889	50,82388894	331361,1	331284,37	270
KS_40	16,60555555	50,8251945	331412,74	331427,96	262
KS_41	16,60627778	50,82691672	331469,78	331617,73	254
KS_42	16,60711111	50,82861116	331534,55	331804,16	251
		1-KU-18 (Kudo	owa Zdrój)		
Ku_1	16,25427777	50,43025009	305056,35	288394,96	395
Ku_2	16,25544444	50,43063898	305140,77	288435,12	398
Ku_3	16,25655555	50,43105565	305221,35	288478,52	400
Ku_4	16,25797222	50,43158342	305324,09	288533,46	420
Ku_5	16,25905555	50,43213898	305403,27	288592,36	436
Ku_6	16,25997222	50,43247231	305469,7	288627	441
Ku_7	16,26122222	50,43377787	305563,79	288768,82	463
Ku_8	16,26205555	50,43372231	305622,71	288760,47	469
Ku_9	16,26252777	50,43391676	305657,03	288780,84	470
Ku_10	16,26283333	50,43433342	305680,42	288826,35	470
Ku_11	16,26347222	50,43458342	305726,8	288852,46	464
Ku_12	16,26394444	50,43494453	305761,8	288891,36	473
Ku_13	16,26497222	50,43513898	305835,55	288910,28	454
Ku_14	16,266	50,43519453	305908,73	288913,77	459
Ku_15	16,26680555	50,43527787	305966,25	288920,93	449
Ku_16	16,26977777	50,43522231	306176,99	288906,99	452
Ku_17	16,27144444	50,43577787	306297,56	288964,39	454
Ku_18	16,27219444	50,43644453	306353,52	289036,52	453
Ku_19	16,27313889	50,43669453	306421,58	289061,85	468
Ku_20	16,27469444	50,4368612	306532,67	289076,31	472
Ku_21	16,27561111	50,43705564	306598,53	289095,54	469
Ku_22	16,27652777	50,4371112	306663,82	289099,33	479
Ku_23	16,27722222	50,4373612	306714,13	289125,3	500
Ku_24	16,27786111	50,43750009	306760,04	289139,07	502
Ku_25	16,27861111	50,43766675	306813,95	289155,65	506
KU_26	16,27930555	50,43788898	306864,15	289178,54	549
KU_27	16,2/986111	50,43780564	306903,24	289167,83	524
KU_28	16,28086111	50,43813898	308975,57	289202,28	522
Z9	10,28208333		307062,44	289202,19	542
No. 1	16 10000000	1-NA-18 (Na		227100 01	506
	16 10026111	50,003///89	230033,37	227250 16	100
	16 10060444	50,00041070	230001,03	227220 E	433
	16 10082222	50,868/7722	290000,20	227/26 21	403 /2/
Na 5	16 10955555	50,00047233	296687 9/	337570 60	404
Na 6	16 11033333	50,8000000	296746 87	337685 6	407
0	10,110000000	50,07027705	230770,07	557005,0	730

1		1	1		1
Na_7	16,11044444	50,87061122	296756,13	337722,34	493
Na_8	16,11058333	50,87105566	296767,83	337771,35	497
Na_9	16,11069444	50,87150011	296777,58	337820,44	500
Na_10	16,11080555	50,87183344	296786,85	337857,18	512
Na_11	16,11119444	50,87247233	296816,97	337927,12	544
Na_12	16,11136111	50,872889	296830,51	337972,97	550
Na_13	16,11127777	50,87305566	296825,37	337991,72	555
Na_14	16,11155555	50,87344455	296846,6	338034,17	559
Na_15	16,11155555	50,87397233	296848,89	338092,83	538
Na_16	16,11183333	50,874389	296870,24	338138,37	513
Na_17	16,11186111	50,87472233	296873,64	338175,34	517
Na_18	16,11205555	50,87508344	296888,89	338214,94	507
Na_19	16,11213888	50,87561122	296897,04	338273,37	502
Na_20	16,11247222	50,87600011	296922,17	338315,67	494
Na_21	16,11272222	50,87641678	296941,56	338361,29	499
Na_22	16,11283333	50,87697233	296951,79	338422,73	477
Na_23	16,11275	50,87736122	296947,62	338466,18	466
Na_24	16,113	50,87777789	296967,01	338511,8	463
Na_25	16,11311111	50,87827789	296977	338567,07	430
Na_26	16,11344444	50,878889	297003,1	338634,07	416
Na_27	16,11352777	50,87927789	297010,65	338677,06	409
Na 28	16,11386111	50,88022233	297038,19	338781,11	396
Na 29	16,11419444	50,88111122	297065,49	338878,98	394
Na 30	16,11452777	50,88205566	297093,03	338983,03	387
Na 31	16,11483333	50,88283344	297117,89	339068,63	384
Na 32	16,11583333	50,88347233	297190,98	339136,89	381
Na 33	16,11686111	50,884139	297266,13	339208,16	376
Na 34	16,11736111	50,88447233	297302,73	339243,83	375
Na 35	16,11786111	50,88477789	297339,21	339276,42	374
Na 36	16,11830555	50,88511122	297371,9	339312,24	394
Na 37	16,11891666	50,885389	297416,07	339341,44	385
Na 38	16,11938888	50,88566677	297450,47	339371,01	387
Na 39	16,11966666	50,886139	297472,05	339422,73	396
Na 40	16,12016666	50,886639	297509,37	339476,93	407
Na 41	16,12072222	50,88708344	297550,36	339524,8	427
Na 42	16,12166666	50,887639	297619,16	339583,96	438
Na 43	16,12261111	50,888139	297687,72	339636,94	438
Na 44	16,12369444	50,88880566	297766,77	339708,06	442
Na 45	16,1255	50,88952788	297896,82	339783,38	429
Na 46	16,12652777	50,890139	297971,72	339848,49	404
Na 47	16,12691666	50,89080566	298001,94	339921,51	401
Na_48	16,12844444	50,89136122	298111,74	339979,08	402
Na_49	16,12947222	50,891889	298186,27	340034,92	390
 Na_50	16,13083333	50,89261122	298285,07	340111,47	375
Na 51	16,1315	50,89333344	298335,05	340189,92	390
Na 52	16,13275	50,89405566	298426,03	340266,77	377
Na 53	16,13358333	50,89447233	298486,41	340310,8	387
Na_54	16,13444444	50,89511122	298549,69	340379,45	413
Na_55	16,13561111	50,89572233	298634,33	340444,19	413
Na_56	16,13663888	50,89644455	298709,69	340521,65	394
Na_57	16,13761111	50,89711122	298780,9	340593,09	396
 Na_58	16,13877777	50,89761122	298865,05	340645,48	386
Na 59	16,13975	50,89830566	298936,38	340720,01	356
Na_60	16,14033333	50,89863899	298978,81	340755,47	365
		1-ND-18 (Nie	damirów)	· ·	
ND 1	15,86580555	50,69347237	278717,09	318738,56	777
 ND_2	15,86702777	50,69372237	278804,54	318762,69	770

ND_3	15,86844444	50,6939446	278905,59	318783,15	748
ND_4	15,86974999	50,69427793	278999,31	318816,29	742
ND_5	15,87102777	50,69455571	279090,81	318843,35	735
ND_6	15,87233333	50,69491682	279184,67	318879,58	724
ND_7	15,87352777	50,69544459	279271,46	318934,67	701
ND_8	15,87427777	50,69544459	279324,4	318932,43	701
ND_9	15,87494444	50,69555571	279371,98	318942,79	690
ND_10	15,8756111	50,69563904	279419,42	318950,07	680
ND 11	15,87630555	50,69577793	279469,09	318963,43	669
ND_12	15,87699999	50,69591682	279518,76	318976,8	676
ND_13	15,87774999	50,69602793	279572,22	318986,91	661
ND_14	15,87844444	50,69616682	279621,89	319000,28	659
ND_15	15,87913888	50,69619459	279671,04	319001,3	656
ND_16	15,8806111	50,69638904	279775,87	319018,52	654
ND_17	15,88177777	50,69677793	279860,04	319058,27	644
ND_18	15,88308333	50,69719459	279954,14	319100,69	642
ND_19	15,88380555	50,69733348	280005,77	319113,98	643
ND_20	15,88444444	50,69744459	280051,38	319124,42	643
ND_21	15,8851111	50,69761126	280099,22	319140,96	644
ND_22	15,88583333	50,69775015	280150,85	319154,25	640
ND_23	15,88655555	50,6978057	280202,08	319158,28	637
ND_24	15,88719444	50,6978057	280247,18	319156,38	634
ND_25	15,88863888	50,69788904	280349,52	319161,35	628
ND_26	15,89005555	50,69788904	280449,51	319157,15	619
ND_27	15,89155555	50,69788904	280555,38	319152,7	610
ND_28	15,89294444	50,69808348	280654,32	319170,19	605
		1-PL-18 (P	lawna)		
PL_01	15,55088888	51,04491689	258314,08	358782,76	410
PL_02	15,55205554	51,04530578	258397,84	358822,14	403
PL_03	15,55305554	51,04597244	258471,36	358892,95	398
PL_4	15,55416666	51,04672244	258553,1	358972,65	387
PL_5	15,55519443	51,04722244	258627,7	359024,84	379
PL6	15,55633332	51,04780578	258710,51	359085,93	371
PL_07	15,55758332	51,04836133	258800,96	359143,57	362
PL_08	15,55858332	51,04894466	258874,04	359205,12	357
PL_09	15,55952777	51,04941689	258942,65	359254,51	355
PL_10	15,56069443	51,05005577	259027,69	359321,69	358
PL_11	15,56213888	51,05038911	259130,6	359354	357
PL_12	15,56288888	51,05111133	259186,89	359431,81	367
PL_13	15,56402777	51,051/78	259270,12	359502,17	335
PL_14	15,5653611	51,05241688	259366,83	359568,81	337
PL_15	15,56602777	51,05286133	259415,83	359616,02	349
PL_16	15,56694443	51,05319466	259481,76	359650,07	340
PL_17	15,50/58332	51,05300088	259528,90	359700,40	328
PL_18	15,5083011	51,05413911	259585,88	359750,39	324
PL_19		51,05530133	259784,82	359877,24	340
PL_20	15,5/155554		223010,97	250005 20	30Z 201
PL_21	15,5727777	51,05047244	259907,5	260070 1	260
DI 22	15 57/20555	51 05701166	253301,40	360152 0	2/5
DI 24	15 57/07221	51 05857700	260021,92	360316 56	227
PI 25	15 57672721	51 0502733	260162 01	360210,30	337
PI 26	15 57713888	51 05991688	260230 55	360363.84	305
PI 27	15 57799999	51 06066688	260294 73	360444 38	303
PL 28	15.57902777	51.06130577	260370.01	360512.04	299
PL 29	15.57988888	51.06205577	260434.19	360592.58	296
PL 30	15,58077777	51,06277799	260500.17	360669.95	290
	· · · · · · · · · · · · · · · · · · ·			,	1

PL 31	15,58163888	51,0633891	260563,62	360735,06	296
PL 32	15,58266666	51,06416688	260639,61	360818,15	317
PL 33	15,58352777	51,06472244	260702,78	360877,09	315
 PL 34	15,58447221	51,06547243	260772,78	360957,36	307
PL 35	15,58547221	51,0661391	260846,24	361028,2	315
PL 36	15,58627777	51,06686132	260906,37	361105,84	316
PL 37	15,5871111	51,06747243	260967,88	361171,05	312
		1-SG-18 (Sreb	orna Góra)		1
SG 1	16,64780555	50,57547227	333504,85	303576,71	635
SG 2	16,65130555	50,57733338	333759,12	303775,71	629
SG 3	16,65186111	50,57844449	333802,35	303897,96	536
SG 4	16,65322222	50,57913894	333901,12	303972,09	512
SG 5	16,65397222	50,57988894	333956,84	304053,77	515
SG 6	16,65480555	50,58038894	334017,57	304107,48	472
SG 7	16,65561111	50,58077783	334075,94	304148,9	452
SG 8	16,65611111	50,58091671	334111,81	304163,21	445
SG 9	16,65638889	50,58138894	334133,13	304215,08	422
SG 10	16,65686111	50,58183338	334168,11	304263,42	419
SG 11	16,65758333	50,5825556	334221,76	304342,07	433
SG 12	16,65772222	50,58313894	334233,63	304406,6	411
SG 13	16,65827778	50,58294449	334272,26	304383,74	412
	16,65905555	50,5830556	334327,69	304394,36	400
SG 15	16,65922222	50,58344449	334340,85	304437,21	398
SG 16	16,65975	50,58372227	334379,17	304466,9	398
SG 17	16,66022222	50,58408338	334413,86	304505,98	392
SG 18	16,66063889	50,58438894	334444,41	304539,01	393
SG 19	16,66155555	50,58502782	334511,52	304607,97	388
SG 20	16,66263889	50,58572227	334590,61	304682,74	382
SG 21	16,6635	50,58636116	334653,78	304751,83	379
SG 22	16,66547222	50,58769449	334798	304895,62	372
SG_23	16,66725	50,58872227	334927,39	305005,89	365
		1-SL-18 (Stara	a Łomnica)		
SL_1	16,57602778	50,35738894	327633,46	279502,29	402
SL_2	16,57455555	50,35888894	327534,22	279672,41	400
SL_3	16,57369444	50,36061117	327479,24	279865,82	394
SL_4	16,57336111	50,3614445	327458,56	279959,2	396
SL_5	16,57297222	50,36230561	327434,04	280055,81	400
SL_6	16,57286111	50,36277783	327427,85	280108,55	398
SL_7	16,57286111	50,3631945	327429,36	280154,86	385
SL_8	16,57286111	50,36386117	327431,78	280228,95	394
SL_9	16,573	50,36416672	327442,76	280262,59	404
SL_10	16,57302778	50,36455561	327446,15	280305,75	417
SL_11	16,57305555	50,36502783	327449,84	280358,16	426
SL_12	16,57297222	50,36547228	327445,53	280407,75	430
SL_13	16,57319444	50,36588894	327462,84	280453,55	425
SL_14	16,57313889	50,36638894	327460,7	280509,24	412
SL_15	16,57322222	50,36680561	327468,14	280555,36	409
SL_16	16,57330555	50,36725005	327475,67	280604,56	405
SL_17	16,57330555	50,3676945	327477,28	280653,96	397
SL_18	16,57302778	50,36858339	327460,76	280753,39	396
SL_19	16,57261111	50,36938894	327434,07	280843,89	390
SL_20	16,57102778	50,37091672	327327,07	281017,36	380
SL_21	16,56911111	50,37238894	327196,18	281185,44	377
SL_22	16,56786111	50,37405561	327113,39	281373,58	372
SL_23	16,56647222	50,37575006	327020,84	281565,13	386
	Γ	1-W-18 (Wierz	chosławice)	Γ	Γ
W_1	16,04577777	50,90138901	292345,42	341322,98	592

1		1	1		1
2	16,04722222	50,90155567	292447,68	341337,44	581
W3	16,04855555	50,90175012	292542,25	341355,3	564
4	16,04980555	50,90186123	292630,59	341364,14	555
W_5	16,05136111	50,90213901	292741,14	341390,64	537
W_6	16,05238888	50,90244456	292814,73	341421,71	544
	16,05380555	50,90213901	292912,93	341383,77	527
W_8	16,05525	50,90236123	293015,43	341404,42	483
W_9	16,05655555	50,90269456	293108,65	341437,8	478
W_10	16,05811111	50,90355567	293221,79	341529,14	446
W_11	16,05961111	50,90375012	293328,06	341546,55	440
W_12	16,06088888	50,90388901	293418,47	341558,41	422
W_13	16,06258333	50,90422234	293539,03	341590,71	410
W_14	16,06366666	50,90447234	293616,26	341615,46	415
W_15	16,06502777	50,90458345	293712,4	341624	399
W_16	16,06586111	50,90427789	293769,61	341587,72	408
W_17	16,06794444	50,90422234	293915,77	341575,72	388
W_18	16,06894444	50,90458345	293987,64	341613,06	384
W_19	16,07022222	50,90486123	294078,66	341640,36	379
W_20	16,07163888	50,90505567	294179,07	341658,02	378
W_21	16,073	50,90530567	294275,82	341682,01	375
W 22	16,07433333	50,90552789	294370,5	341702,99	370
W 23	16,07569444	50,90580567	294467,37	341730,07	365
W 24	16,077	50,90630567	294561,32	341782	361
W 25	16,07841666	50,90622234	294660,5	341768,8	359
W 26	16,07919444	50,906389	294715,89	341785,15	353
W 27	16,07986111	50,90652789	294763,35	341798,74	358
W 28	16,08055555	50,90658345	294812,39	341802,98	355
W 29	16,08119444	50,906639	294857,53	341807,38	347
W 30	16,08188888	50,90672234	294906,7	341814,71	345
W 31	16,08261111	50,90680567	294957,82	341821,96	352
W 32	16,08338888	50,90683345	295012,59	341822,89	343
W 33	16,08416666	50,90686122	295067,37	341823,81	346
W 34	16,08547222	50,90694456	295159,48	341829,45	342
W 35	16,08688888	50,907139	295259,88	341847,13	339
W 36	16,08822222	50,906889	295352,48	341815,64	337
W 37	16,08961111	50,90697233	295450,44	341821,05	334
W 38	16,09494444	50,90708344	295825,7	341818,63	335
W 39	16,09575	50,90697233	295881,82	341804,05	342
W 40	16,097	50,90705567	295970,02	341809,85	349
W 41	16,09836111	50,90705567	296065,67	341806,09	360
W 42	16,09958333	50,90658344	296149,49	341750,23	368
W_43	16,10094444	50,90652789	296244,89	341740,29	376
	•	1-ZL-18 (Zło	otoryja)		•
ZL_01	16,00097222	51,06544457	289938,77	359682,95	401
ZL_02	16,00208333	51,0670279	290023,75	359855,75	372
ZL_03	16,00324999	51,06880568	290113,5	360050,01	385
ZL 04	16,00363888	51,06969457	290144,75	360147,69	392
 ZL_05	16,00438888	51,07038901	290200,41	360222,73	410
ZL 06	16,00505555	51,07119457	290250,74	360310,36	430
ZL 07	16,00547222	51,07188901	290283,05	360386,35	439
ZL 08	16,00611111	51,07291679	290332,44	360498.76	430
ZL 09	16,00644444	51,07363901	290359,04	360578,08	419
ZL 10	16,00661111	51,07386124	290371,72	360602,3	415
ZL 11	16,00669444	51,0742779	290379,43	360648,37	424
ZL 12	16,00697222	51,0745279	290400,01	360675,37	424
ZL 13	16,00738888	51,07488901	290430,82	360714,31	416
 ZL_14	16,00802777	51,07575013	290479,44	360808,2	406

	-		÷		
ZL_15	16,00861111	51,07650013	290523,67	360889,89	387
ZL_16	16,00913888	51,07744457	290564,89	360993,36	393
ZL_17	16,00974999	51,07833346	290611,69	361090,41	373
ZL_18	16,01011111	51,07913901	290640,61	361178,91	334
ZL_19	16,01091666	51,07972235	290699,64	361241,45	331
ZL_20	16,01122222	51,08022235	290723,29	361296,15	325
ZL_21	16,01166666	51,08069457	290756,54	361347,37	316
ZL_22	16,01147222	51,08111124	290744,8	361394,23	318
ZL_23	16,01183333	51,08155568	290772,09	361442,6	307
ZL_24	16,01236111	51,08233346	290812,55	361527,54	300
ZL_25	16,01280555	51,08313901	290847,3	361615,81	309
ZL_26	16,0135	51,0840279	290899,92	361712,63	293
ZL_27	16,01413888	51,08488901	290948,53	361806,51	295
ZL_28	16,01508333	51,08580568	291018,77	361905,71	305
ZL_29	16,01502777	51,08622235	291016,76	361952,18	289
ZL_30	16,01527777	51,08669457	291036,39	362003,95	297
ZL_31	16,01555555	51,0870279	291057,34	362040,21	289
ZL_32	16,01563888	51,08738901	291064,8	362080,11	297
ZL_33	16,016	51,0877779	291091,83	362122,3	289
ZL_34	16,01666666	51,08858346	291142,12	362209,94	281
ZL_35	16,01722222	51,08938901	291184,64	362297,89	280
ZL_36	16,01736111	51,08991679	291196,74	362356,15	272
ZL_37	16,01788888	51,09069457	291237,18	362441,1	260
ZL_38	16,01844444	51,0915279	291279,82	362532,14	246
ZL_39	16,01872222	51,09194457	291301,14	362577,66	260
ZL_40	16,01905555	51,09230568	291326,1	362616,85	258
ZL_41	16,01958333	51,09316679	291366,91	362711,06	253
ZL_42	16,02013888	51,09397235	291409,42	362799,01	247
ZL_43	16,02080555	51,09480568	291459,83	362889,74	244
ZL_44	16,02138888	51,09563901	291504,41	362980,7	234
ZL_45	16,02161111	51,09600012	291521,58	363020,21	232
ZL_46	16,02186111	51,09644457	291541,08	363068,89	229
ZL_47	16,02111111	51,0972779	291492,34	363163,64	224
ZL_48	16,02155555	51,0980279	291526,82	363245,73	220
ZL_49	16,02316666	51,0985279	291641,82	363296,74	223
ZL_50	16,02336111	51,09961123	291660,29	363416,59	224
ZL_51	16,02369444	51,10038901	291687,12	363502,09	219
ZL_52	16,02413888	51,10113901	291721,59	363584,19	215
ZL_53	16,02480555	51,10288901	291776,11	363776,8	212
ZL_54	16,02541666	51,10469457	291826,99	363975,74	212
ZL_55	16,02605555	51,10644457	291879,55	364168,43	211
ZL_56	16,02719444	51,10808346	291966,6	364347,35	208
ZL_57	16,02838888	51,10972234	292057,53	364526,12	205
ZL_58	16,02930555	51,11138901	292129,15	364708,77	202
ZL_59	16,02997222	51,11305568	292183,27	364892,12	201
ZL_60	16,03047222	51,11483345	292226,23	365088,29	199
ZL_61	16,0335	51,11608345	292443,64	365218,67	192
ZL_62	16,03530555	51,11741679	292575,92	365361,76	200
ZL_63	16,03719444	51,11886123	292714,52	365516,97	194
ZL_64	16,03897222	51,12022234	292844,96	365663,24	191
ZL_65	16,04097222	51,1215279	292990,7	365802,71	193

3.5. Zakres i metodyka prac

3.5.1. Zakres prac

Polowe prace geodezyjne

W ramach polowych prac geodezyjnych:

- wytyczono układy pomiarowe dla 401 punktów sondowań zlokalizowanych na 12 profilach magnetotellurycznych o łącznej długości 36 km,
- wytyczono układ pomiarowy dla punktu referencyjnego.

Sondowania profilowe (CPMT)

W ramach polowych prac magnetotellurycznych wykonano sondowania profilowe na 12 profilach w ilości 401 CPMT.

Lp.	Lp. Nazwa profilu		Liczba sondowań	Długość profilu [m]
1	1-PL-18	Pławna	37	3 700
2	1-ZL_I-18	Złotoryja I	43	3600
3	1-ZL_II-18	Złotoryja II	22	3 500
4	1-ND-18	Niedamirów	28	2 100
5	1-W-18	Wierzchosławice	43	4 000
6	1-NA-18	Nagórnik	60	4 600
7	1-GL-18	Głuszyca	27	2 600
8	1-SG-18	Srebrna Góra	23	2 200
9	1-KS-18	Książnica	42	3 700
10	1-KU-18	Kudowa	29	2 300
11	1-SL-18	Stara Łomnica	23	2 300
12	1-BK-18	Bystrzyca Kłodzka	24	2 100
		Razem:	401	36 700

 Tabela nr 3.2. Zestawienie wykonanych prac (ilość sondowań, nazwa i długość profili)

Przetwarzanie danych pomiarowych

W pierwszym etapie przetwarzania danych wykonano:

- grupowanie plików pomiarowych (*.tbl, *.ts?) zawierających przebiegi czasowe w zsynchronizowanych grupach czasowych,
- weryfikację wizualną danych selekcję w domenie czasu,
- obliczenie transformaty Fouriera dla fragmentów przebiegów czasowych polowych i referencyjnych,
- zbiór parametryczny (*.prm) do przetwarzania danych metodą robust,
- przetwarzanie danych estymację składowych tensora impedancji (zbiory *.?mt, *.mt?).

W drugim etapie przetwarzania danych wykonano:

- edycję składowych spektralnych (zbiory *.mpk),
- eksport przetworzonych przebiegów czasowych do międzynarodowego formatu SEG-EDI.

Interpretacja ilościowa

Interpretacja ilościowa obejmowała:

- interpretację 1D sondowań geoelektrycznych wykonanych metodą Occama,
- interpretację 2D NLCG wzdłuż 12 profili o łącznej długości 36 km,
- interpretacja geologiczno-strukturalna i hydrogeologiczna wzdłuż 12 profili pomiarowych.

3.5.2. Metodyka prac

Badania geofizyczne metoda magnetotelluryczna zostały wykonane wzdłuż dwunastu linii profilowych: Bystrzyca Kłodzka (1-BK-18), Głuszyca (1-GL-18), Książnica (1-KS-18), Kudowa (1-KU-18), Nagórnik (1-NA-18), Niedamirów (1-ND-18), Pławna (1-PL-18), Srebrna Góra (1-SG-18), Stara Łomnica (1-SL-18), Wierzchosławice (1-W-18), Złotoryja I (1-ZL_I-18), Złotoryja II (1-ZL_II-18) o łącznej długości 36 km celem rozpoznania uwarunkowań geologiczno-strukturalnych i hydrogeologicznych do głębokości 2-4 km, metodą ciągłego profilowania magnetotellurycznego (CPMT). Prace terenowe polegały na rejestracji przebiegów czasowych składowych naturalnego pola elektromagnetycznego generowanego przez oscylacje jonosfery i odległe wyładowania atmosferyczne. W badaniach została wykorzystana metoda sondowań magnetotellurycznych w paśmie audiomagnetotellurycznym – AMT z rozszerzeniem o pasmo magnetotelluryczne – MT. Pomiary wykonane zostały zmiennym krokiem pomiarowym: od 50 m w strefach występowania młodych dyslokacji do 100-200 m na skrajnych odcinkach profilu. Rejestracje przebiegów czasowych odbywały się niezależnie w czterech zakresach częstotliwości oznaczonych: .ts2 (10400-900 Hz), .ts3 (780-40 Hz), .ts4 (33-5.6 Hz), .ts5 (4.7-0.001 Hz), o czestotliwościach próbkowania odpowiednio: 24000 Hz, 2400 Hz, 150 Hz, 15 Hz. Rejestracje odbywały się synchronicznie na dwóch punktach: polowym oraz na tak zwanym "magnetycznym punkcie referencyjnym - magnetic remote reference site" w celu pomiarów punkt zakłóceń elektromagnetycznych. Podczas eliminacii referencyiny zlokalizowany był w odległości ok. 500 km od linii profili w miejscowości Jasiony (wieś w Polsce położona w województwie mazowieckim, w powiecie żuromińskim, w gminie Lubowidz).

Bezpośrednio przed właściwymi pomiarami wykonana została kalibracja aparatury pomiarowej i czujników pola magnetycznego. Kalibracja aparatury pomiarowej polegała na ustaleniu związku rejestrowanych parametrów elektrycznych z parametrami pola zewnętrznego. Układy pomiarowe sondowań MT/AMT (Fig. 3.5.1, 3.5.2., 3.5.3.) składały się z naprzemiennie stosowanych odbiorników V8-6R oraz RXU-3ER. Podstawowy układ pomiarowy sondowań MT/AMT składał się z odbiornika V8-6R (pomiar składowych elektrycznych i magnetycznych), układ ten był naprzemiennie stosowany z odbiornikiem RXU-3ER (pomiar tylko składowych elektrycznych), co pozwoliło na rejestrację naturalnego pola EM przy pomocy dwóch par wzajemnie prostopadłych dipoli elektrycznych E_x , E_y , oraz trzech czujników magnetycznych typu AMTC-30 (pasmo AMT) i MTC-50 (pasmo MT) do pomiaru składowych odpowiednio H_x , H_y , H_z , lokalizowanych w pobliżu środka dipoli elektrycznych. Dipole elektryczne wykonane były z kabla ekranowanego typu CX-75 i pary uziemień w postaci elektrod niepolaryzujących

PE4 (Pb/PbCl₂) lub Cu/CuSO₄. Dipole elektryczne i czujniki magnetyczne były podłączane bezpośrednio do odbiornika V8-6R. Przebiegi czasowe zapisywane były bezpośrednio na kartach typu CompactFlash512MB.

Fig. 3.5.1. Zdjęcia z prac terenowych z wykorzystaniem aparatury firmy Phoenix Geophysics Ltd.

Fig. 3.5.2. Schemat układu pomiarowego profilowań magnetotellurycznych

Fig. 3.5.3. Aparatura pomiarowa i czujniki pola magnetycznego

W rezultacie zastosowania omówionych powyżej układów pomiarowych zarejestrowane zostały:

- dwie pary składowych elektrycznych na punkcie profilowym: Ex, Ey,
- dwie poziome i jedna pionowa składowa magnetyczna na punkcie profilowym: Hx, Hy, Hz,
- dwie składowe elektryczne na punkcie referencyjnym: Ex-r, Ey-r,
- dwie składowe magnetyczne na punkcie referencyjnym: Hx-r, Hy-r.

3.6. Przetwarzanie i interpretacja danych magnetotellurycznych

3.6.1. Przetwarzanie danych magnetotellurycznych

Przetwarzanie danych magnetotellurycznych wykonane zostało w oparciu o programy SSMT2000 oraz MT-Editor firmy Phoenix Geophysics Ltd., a także system do przetwarzania i interpretacji danych geofizycznych WinGLink firmy Geosystem Srl. Przebiegi czasowe z sondowań magnetotellurycznych MT/AMT były poddawane wielostopniowemu processingowi numerycznemu z wykorzystaniem procedur typu *robust* zaimplementowanych do oprogramowania SSMT2000.net firmy Phoenix Geophysics. Robust processing to statystyczna, iteracyjna metoda processingu oparta na metodzie najmniejszych kwadratów. W trakcie przetwarzania danych z zastosowaniem estymatorów typu "robust" identyfikuje się i eliminuje dane związane z szumem, którego rozkład odbiega od rozkładu normalnego i którego niewielka ilość może znacząco obciążyć estymowany parametr (impedancję).

W narzędziach wykorzystujących procedurę "robust", zastosowanych we wspomnianym oprogramowaniu, przetwarzanie danych przebiega w dwóch etapach.

W pierwszym etapie przetwarzania wykonano:

- grupowanie plików pomiarowych (.tbl, .ts?) w zsynchronizowanych grupach czasowych,
- weryfikację wizualną danych selekcja w domenie czasu,

- obliczanie transformaty Fouriera dla fragmentów przebiegów czasowych polowych i referencyjnych (z zastosowaniem FFT – Szybkiej Transformacji Fouriera),
- konstrukcję zbioru parametrycznego (*.prm) do przetwarzania danych metodą robust,
- przetwarzanie danych estymacja składowych impedancji (zbiory *.?mt, *.mt?).

Drugi etap przetwarzania danych obejmował przygotowanie krzywych sondowań (amplitudowych i fazowych) do interpretacji poprzez edycję ich poszczególnych składowych spektralnych. Wykorzystany został do tego program komputerowy MT-Editor. Zbiorem wyjściowym były dane magnetotelluryczne zapisane w międzynarodowym formacie SEG-Edi.

3.6.2. Interpretacja danych magnetotellurycznych

Interpretacja danych magnetotellurycznych polegała na określeniu rozkładu oporności w ośrodku geologicznym i powiązaniu kompleksów geoelektrycznych, wydzielonych na podstawie krzywych pomiarowych, z kompleksami geologicznymi. Wyniki zostały zinterpretowane oraz opracowane z użyciem oprogramowania WinGLink firmy Geosystem Srl. oraz Surfer firmy Golden Software.

Interpretację ilościową wykonano w oparciu o algorytmy do inwersji 1D i 2D danych magnetotellurycznych. Inwersja 1D wykonana została przy użyciu procedur "wygładzających" typu Occam, natomiast inwersję 2D przeprowadzono według algorytmu NLCG (*Non-Linear Conjugate Gradient*).

Inwersja 1D według algorytmu Occama jest metodą komputerowego obliczania jednowymiarowego rozkładu oporności w ośrodku geologicznym na podstawie amplitudowych i fazowych krzywych sondowań. Podstawowym założeniem tej metody jest dążenie do uzyskania maksymalnie gładkiego (płynnego) rozwiązania. W rezultacie rozkład oporności w ośrodku geologicznym jest zgeneralizowany i pozbawiony wyraźnych kontrastów. W praktyce program komputerowy zakłada model startowy w postaci ośrodka poziomo warstwowanego o miąższościach warstw rosnących regularnie z głębokością, zgodnie ze skalą logarytmiczną. Procedura minimalizacji funkcji błędu, opisującej rozbieżność danych pomiarowych i obliczonych dla założonego modelu skonstruowana została w taki sposób, aby kontrasty opornościowe były minimalne. W rezultacie, dla założonej á priori ilości warstw w modelu startowym, zmianom podlegają ich oporności. Niewątpliwą zaletą metody jest jej pełna automatyzacja. Ingerencja interpretatora sprowadza się do przygotowania danych, wprowadzenia ilości warstw oraz określenia interwału głębokościowego interpretacji.

Inwersja 2D metodą NLCG polega na iteracyjnym dopasowaniu dwuwymiarowego ośrodka geoelektrycznego do krzywych pomiarowych amplitudowych i fazowych, z wykorzystaniem metody minimalizacji nieliniowych gradientów sprzężonych. Funkcja błędu opisująca sumaryczną rozbieżność pomiędzy danymi empirycznymi i obliczonymi teoretycznie dla modelu, jest minimalizowana w kolejnych krokach iteracyjnych, prowadzących do stopniowej modyfikacji modelu startowego. W swoim założeniu metoda NLCG dąży do modelu wygładzonego. Stopień wygładzenia określony jest przed rozpoczęciem procesu inwersji poprzez parametr tłumienia τ . Wyższe τ daje w wyniku bardziej wygładzony model kosztem gorszego dopasowania krzywych pomierzonych do modelowych. Dla uzyskania optymalnego rozwiązania została wykonana inwersja 2D dla kilkudziesięciu modeli startowych o zmiennych parametrach tłumienia. Rozwiązanie zagadnienia inwersji jest wieloznaczne, tzn. istnieje wiele różnych modeli, które można dopasować do danych empirycznych z zadowalającą dokładnością. W tej sytuacji istotne dla prawidłowego wykorzystania programu jest odpowiednie narzucenie

więzów urealniających uzyskane rozwiązanie, oraz odpowiednich warunków początkowych w postaci modelu startowego. Modelem takim może być jednorodna półprzestrzeń (najprostszy model) lub też mniej lub bardziej złożony dwuwymiarowy model geoelektryczny. Wprowadzenie modelu bliskiego rzeczywistości ogranicza zakres zmienności jego parametrów w procesie minimalizacji i prowadzi na ogół do dobrych rozwiązań. Dodatkowym czynnikiem poprawiającym jakość modelu wynikowego są więzy w postaci stałych wartości wybranych parametrów lub ograniczenia zakresu ich zmienności. Dobrym wyjściem, zwłaszcza dla względnie płaskich modeli geoelektrycznych jest ograniczenie zmienności parametrów warstw geoelektrycznych dla elementów skończonych obejmujących otwory wiertnicze. Miąższości i oporności warstw określone na podstawie profilowań elektrometrii wiertniczej na ogół dobrze oddają rzeczywisty model geoelektryczny i narzucają prawidłowe rozwiązanie zagadnienia inwersji.

3.7. Opracowanie i wyniki prac

3.7.1. Obszar Pławna

3.7.1.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.1.1. i 3.7.1.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Rozkład oporności będący wynikiem interpretacji ilościowej 1D wzdłuż profilu 1-PL-18 przedstawiony został na figurach 3.7.1.3 i 3.7.1.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.1.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.1.5 o średnim błędzie kwadratowym (R.M.S.) równym 4.1. Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został w Zeszycie 1 na figurach 3.7.1.5a – 3.7.1.5j (modele po kolejnych iteracjach). Figura 3.7.1.5a przedstawia model geoelektryczny po 1 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.1.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.1.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.1.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.1.5 i 3.7.1.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Rejon badań wzdłuż profilu 1-PL-18 Pławna (Fig. 3.7.1.6) charakteryzuje się blokową budową. Z geoelektrycznego punktu widzenia ośrodek można podzielić na dwie części. Pierwsza (do sondowania PL_09) jest wysokooporowa i zbudowana głównie z łupków kwarcowoserycytowych poniżej których prawdopodobnie występują prekambryjskie gnejsy. Ich jednoznaczne rozdzielenie z wykorzystaniem metod geoelektrycznych jest bardzo trudne. W okolicy sondowania PL_09 wyinterpretowany został uskok o zrzucie około 2 km. Strefa kontaktu pomiędzy łupkami kwarcytowymi jest bardzo wyraźna. Osady na północny-wschód od sondowania PL_09 charakteryzują się zdecydowanie niższymi wartościami oporności niż skały z południowo-zachodniej części przekroju. W interpretacji geologicznej zostały one powiązane z piaskowcami i zlepieńcami czasami z wkładami iłowców i mułowców wieku permskiego. Poniżej nich zalegają prawdopodobnie górnokarbońskie piaskowce, iłowce i zlepieńce. Osady te w obrazie geoelektrycznym wyznaczają spąg niskooporowego kompleksu. Wysokooporowe podłoże zbudowane zapewne z łupków krystalicznych lub gnejsów charakteryzuje schodkową budową. Spąg niskooporowego kompleksu w świetle badań magnetotellurycznych występuje na głębokości od 2,1 km p.p.m. do 1,2 km p.p.m.

Na podstawie uzyskanego przekroju geoelektrycznego trudno wskazać strefę interesującą z geotermalnego punktu widzenia. Rozkład oporności poza opisanym kontaktem w okolicy sondowania PL_09 jest raczej pozbawiony stref anomalnych, i dlatego opierając się tylko na tym rozkładzie nie jest możliwe wydanie rekomendacji odnośnie ewentualnych dalszych badań geotermalnych.

3.7.2. Obszar Złotoryja I

3.7.2.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.2.1. i 3.7.2.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-ZL_I-18 przedstawiona została na figurach 3.7.2.3 i 3.7.2.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.2.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania

zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.2.5.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.2.5a – 3.7.2.5j (modele po kolejnych iteracjach). Figura 3.7.2.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.2.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.2.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.2.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig.3 7.2.5 i 3.7.2.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Profil 1-ZL_I-18 Złotoryja I (Fig. 3.7.2.6) zlokalizowany jest rejonie występowania utworów ordowicko - karbońskich (karbon dolny). Na silnie zwietrzałych skałach leżą niezgodnie utworykenozoiczne. Na badanym obszarze można również spotkać wulkanity formacji bazaltowej, które występują zarówno w formie kominów wulkanicznych przebijających wyżej wspomniane starsze podłoże, jak i pokryw lawowych i tufowych, głównie w obrębie Czwartorzęd reprezentuja mioceńskich osadów klastycznych. osady lodowcowe, wodnolodowcowe i rzeczne zlodowacenia południowopolskiego i środkowopolskiego oraz utwory peryglacjalne rzeczne i stokowe zlodowacenia północnopolskiego i holocenu. Osady połączone z utworami permskimi na przekrojach geoelektrycznych tworzą niskooporowy kompleks.

Na uwagę zasługuje strefa związana z Łuską Chełmca, przez budowę której silnie zaburzony został obraz geoelektryczny. Przyczyniło się to do tego, że wskazano jedynie hipotetyczne strefy związane z elementami nasuwczymi. Pytajnikiem oznaczono strefę podwyższonych oporności, która może być związana z obserwowanymi na powierzchni diabazami (rejonie sondowań od ZL_08 do ZL_21). Druga strefa występowania diabazów widoczna jest pomiędzy sondowaniami ZL_26 i ZL_33. Pomiędzy sondowaniami ZL_38 do ZL_40 wg mapy geologicznej na powierzchni obserwowane są utwory karbońskie. W powiązaniu z rozkładem oporności można było wskazać prawdopodobny zasięg tych utworów pod powierzchnią kompleksu utworów permskich i osadowych.

Na przedstawionym przekroju wyinterpretowana została strefa spękań pomiędzy sondowaniami ZL_24 i ZL_38, która obejmuje zuskokowaną część Łuski Chełmca oraz podłoża granitowego. W jej obrębie obserwowane są trzy mniejsze niskooporowe strefy, które mogą wskazywać obszar szczelin wypełnionych solankami.

3.7.3. Obszar Złotoryja II

3.7.3.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.3.1. i 3.7.3.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego

w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-ZL_II-18 przedstawiona została na figurach 3.7.3.3 i 3.7.3.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.3.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.3.5.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.3.5a – 3.7.3.5j (modele po kolejnych iteracjach). Figura 3.7.3.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.3.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.3.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.3.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.3.5 i 3.7.3.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Profil 1-ZL II-18 Złotoryja II (Fig. 3.7.3.6) zlokalizowany jest rejonie występowania zmetamorfizowanych w facji zieleńcowej utworów dolnopaleozoicznych. Na silnie zwietrzałych skałach leżą niezgodnie utwory kenozoiczne. Na badanym obszarze występują również kenozoiczne wulkanity o składzie bazaltoidów, które występują zarówno w formie kominów wulkanicznych przebijających wyżej wspomniane starsze podłoże, jak i pokryw lawowych i tufowych, głównie w obrębie mioceńskich osadów klastycznych. Czwartorzęd reprezentują osady lodowcowe, wodnolodowcowe i rzeczne zlodowacenia południowopolskiego i środkowopolskiego utwory peryglacjalne rzeczne stokowe zlodowacenia oraz i północnopolskiego i holocenu. Osady połączone z utworami permskimi na przekrojach geoelektrycznych tworzą kompleks niskooporowy.

Ciekawa wydaje się anomalia o podwyższonych wartościach oporności elektrycznej, która może być związana z żyłami bazaltowymi zasilających obserwowane na powierzchni wulkanity bazaltowe. Na tym etapie pozostaje to jedynie w sferze domniemań. Jedynym faktem potwierdzającym tą teorię jest wskazanie na mapie geologicznej pomiędzy sondowaniami ZL_53 i ZL 54 wychodni bazaltowej. Niestety nie można tego faktu potwierdzić bezpośrednio na

podstawie rozkładów oporności. Możliwe, że jest to spowodowane rozmieszczeniem punktów pomiarowych na obrzeżach wychodni. Od sondowania ZL_57 do ZL_65 poniżej niskooporowego kompleksu skał permskich i kenozoicznych, posiłkując się dostępnymi przekrojami geologicznymi zinterpretowano warstwę związaną prawdopodobnie z obecnością fyllitów ordowicko – dewońskich(?) leżących bezpośrednio na podłożu granitowym.

Na przedstawionym przekroju wyinterpretowano strefę spękań w podłożu granitowym(?) poniżej utworów paleozoicznych na głębokości od 2 do 3 km poniżej poziomu terenu.

Lokalizacja i interpretacja geologiczna połączonych profili Złotoryja I i Złotoryja II jest przedstawiona na Fig. 3.7.3.7. i 3.7.3.8.

3.7.4. Obszar Niedamirów

3.7.4.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.4.1. i 3.7.4.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-ND-18 przedstawiona została na figurach 3.7.4.3 i 3.7.4.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły, jako modele startowe do obliczenia inwersji 2D.

3.7.4.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadawalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć, jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano modele geoelektryczne przedstawione na figurze 3.7.4.5 o średnim błędzie kwadratowym (R.M.S.) równym 1.9. Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został w zeszycie 1 na figurach 3.7.4.5a – 3.7.4.5j (modele po kolejnych iteracjach). Figura 3.7.4.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.4.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.4.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.4.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.4.5 i 3.7.4.5 j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Wzdłuż profilu 1-ND-18 Niedamirów (Fig. 3.7.4.6.) występują dwa obszary o obniżonej oporności. Pierwszy zlokalizowany jest w okolicy sondowań ND 2, ND 3 i ND 4 na wysokości od 500 do 200 m n.p.m. Drugi związany jest ze strefą kontaktową pomiędzy amfibolitami wieku ordowicko-sylurskiego a osadami dolnokarbońskimi, w skład których wchodzą głównie zlepieńce. Podwyższone wartości oporności w obrębie kompleksu dolnokarbońskiego związane są zapewne z możliwą obecnością w ich obrębie bloków wapieni lub gnejsów. Miąższości osadów karbońskich w świetle badań magnetotellurycznych wynosi od 250 m do 700 metrów. Zachodnią część profilu tworzą kambro-sylurskie zieleńce charakteryzujące się wysokimi wartościami oporności, pod którymi spodziewane są również wysokooporowe prekambryjskie gnejsy. Anomalia niskooporowa zachodniej części przekroju (rejon sondowań ND 2, ND 3 i ND 4) może być rozpatrywana, jako interesująca z punktu widzenia geotermalnego, chociaż nie można wykluczyć jej związku z fyllitami serycytowo-chlorytowymi, które mogą być częściowo grafitowe. Pod względem geotermalnym interesujący może być także kontakt pomiędzy karbonem i ordowiko-sylurem. Na wysokości około 200 m n.p.m. od sondowania ND_2 do ND_22 w obrębie utworów wysokooporowych zauważyć można lekkie obniżenie oporności, być może związane z obecnością zmineralizowanych wód, które mogłoby zasilać ewentualny uskok w rejonie sondowania ND 22.

3.7.5. Obszar Wierzchosławice

3.7.5.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.5.1. i 3.7.5.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-W-18 na figurach 3.7.5.3 i 3.7.5.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.5.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geolektryczny przedstawiony na figurze 3.7.5.5 o średnim błędzie kwadratowym (R.M.S.) równym 2.5.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.5.6a – 3.7.5.6j (modele po kolejnych iteracjach). Figura 3.7.5.6a przedstawia model geoelektryczny po 3 iteracji modelu startowego. Rozkład oporności zaprezentowany na tych modelach jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu

zaprezentowanego na ostatnich figurach 3.7.5.6h i 3.7.5.6j, które przedstawiają wynikowy obraz modelu dwuwymiarowego.

3.7.5.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.5.7) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.5.5 i 3.7.5.6j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Ośrodek geologiczny w tym rejonie zbudowany jest z utworów paleozoicznych i proterozoicznych w podłożu oraz kenozoicznych tworzących pokrywę osadową.

Na modelach przeważają stosunkowo wysokie wartości oporności, które utożsamiane są z gnejsami. Widoczna jest ich blokowa budowa. Naniesiono na nie elementy budowy tektonicznej dla wskazania potencjalnych stref termalnych zlokalizowanych w zeszczelinowaconym ośrodku. Takie obszary charakteryzują się obniżonymi wartościami oporności w porównaniu z otoczeniem. W rejonie profilu 1-W-18 niskooporowe strefy zlokalizowane są pomiędzy sondowaniami W_1 do W_3, pomiędzy W_11 a W_16, pomiędzy sondowaniami W_20 i W_24 i pomiędzy W_36 a W_41. Z punktu widzenia oceny kontrastu opornościowego trzecia strefa charakteryzuje się najniższymi wartościami oporności.

W nadkładzie znajdują się skały pochodzenia kambryjskiego zbudowane z matatufitów oraz szarych łupków. Charakteryzują się one podwyższonymi wartościami oporności, przez co wskazanie dokładnej granicy pomiędzy nimi a skałami w podłożu była utrudniona. Stąd postawione granice należy traktować jako hipotetyczne.

Rozdzielenie osadów czwartorzędowych i skał Permu w rejonie badań było trudne. Czwartorzęd w tym obszarze zbudowany jest ze żwirów i piasków natomiast Perm zbudowany jest z piaskowców, mułowców i iłowców. Geoelektrycznie oba kompleksy są podobne i charakteryzują się niskimi wartościami oporności., dlatego na przekrojach przedstawiane są łącznie.

3.7.6. Obszar Nagórnik

3.7.6.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.6.1. i 3.7.6.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-Na-18 przedstawiona została na figurach 3.7.6.3 i 3.7.6.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.6.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na

rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.6.5 o średnim błędzie kwadratowym (R.M.S.) równym 3.8 dla przekroju.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego dla przekroju 1-NA-18 przedstawiony został na figurach 3.7.6.6a – 3.7.6.6h w zeszycie 1 (modele po kolejnych iteracjach). Figura 3.7.6.6a przedstawia model geoelektryczny po 2 iteracji modelu startowego. Rozkład oporności zaprezentowany na tym modelu jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na figurze 3.7.6.6h, który przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.6.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.6.7) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.6.5 i 3.7.6.6h), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Na modelach przeważają stosunkowo wysokie wartości oporności, które utożsamiane są z gnejsami. Widoczna jest ich blokowa budowa. Naniesiono na nie elementy budowy tektonicznej dla wskazania potencjalnych stref termalnych zlokalizowanych w zeszczelinowaconym ośrodku. Takie obszary charakteryzują się obniżonymi wartościami oporności w porównaniu z otoczeniem. Na przekroju 1-NA-18 strefy takie występują pomiędzy sondowaniami Na_36 i Na_41 oraz Na_51 i Na_53. Z punktu widzenia oceny kontrastu opornościowego trzecia strefa charakteryzuje się najniższymi wartościami oporności.

W nadkładzie znajdują się skały pochodzenia kambryjskiego zbudowane z matatufitów oraz szarych łupków. Charakteryzują się one podwyższonymi wartościami oporności, przez co wskazanie dokładnej granicy pomiędzy nimi a skałami w podłożu była utrudniona. Stąd postawione granice należy traktować jako hipotetyczne.

Na profilu 1-NA-18 możliwe było wykartowanie osadów karbońskich, które w tym rejonie wykształcone są jako różnego rodzaju zlepieńce, piaskowce gruboziarniste oraz mułowce, a na przekrojach geoelektrycznych zaznaczające się jako niskooporowe (sondowania od Na_1 do Na_10).

Rozdzielenie osadów czwartorzędowych i skał Permu w rejonie badań było trudne. Czwartorzęd w tym obszarze zbudowany jest ze żwirów i piasków natomiast Perm zbudowany jest z piaskowców , mułowców i iłowców. Geoelektrycznie materiał ten jest podobny, dlatego na przedstawionych przekrojach kompleks ten jest obserwowany jako niskooporowy. Największa miąższość tego kompleksu została zaobserwowana w rejonie Nadgórnika pomiędzy sondowaniami Na_26 oraz Na_40. Ciekawe wydają się anomalie rzędu 160 Ωm pomiędzy sondowaniami Na_22 i Na_26 oraz Na_37 i Na_41, które zlokalizowane są w strefach zrzutowych, prawdopodobnie wieku karbońskiego.

3.7.7. Obszar Głuszyca

3.7.7.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.7.1. i 3.7.7.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-GL-18 przedstawiona została na figurach 3.7.7.3 i 3.7.7.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.7.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurach 3.7.7.5 o średnim błędzie kwadratowym (R.M.S.) równym 1.6.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.7.5a – 3.7.7.5j w zeszycie 1 (modele po kolejnych iteracjach). Figura 3.7.7.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatnim figurach 3.7.7.5j, który przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.7.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.7.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.7.5 i 3.7.7.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Na przekroju 1-GL-18 Głuszyca (Fig. 3.7.7.6) najniższe wartości oporności występują w południowo-zachodniej części i związane są z utworami karbonu reprezentowanymi w tym rejonie przez piaskowce, mułowce, iłowce oraz zlepieńce. Na podstawie interpretacji danych geoelektrycznych ich maksymalna miąższość występuje w południowo-zachodniej części przekroju (wynosi około 2 km) i zmniejsza się w kierunku północno-wschodnim. Strefa kontaktu pomiędzy osadami karbonu a skałami prekambryjskimi występuje pomiędzy sondowaniami GL_11 i GL_12. Od sondowania GL_12 ośrodek pod względem geoelektrycznym jest zdecydowanie wysokooporowy. Z geologicznego punktu widzenia tę część przekroju można powiązać z prekambryjskimi gnejsami biotytowymi, migmatycznymi i biotytowo-

plagioklazowymi. Pod względem geotermalnym interesująca może być niskooporowa strefa uskokowa w pobliżu sondowania GL_11 oraz strefa obniżonych oporności na głębokości 1100 - 1900 m p.p.m. w końcowej część przekroju (od sondowania GL_22 do GL_27). Do dyskusji należy poddać przyczynę drugiej z poprzednio wymienionych stref niskooporowych. Być może ona ma związek ze stwierdzonymi porfirami w pobliżu sondowania GL_25.

3.7.8. Obszar Srebrna Góra

3.7.8.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.8.1. i 3.7.8.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-SG-18 przedstawiona została na figurach 3.7.8.3 i 3.7.8.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.8.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.8.5 o średnim błędzie kwadratowym (R.M.S.) równym 1.7.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został w zeszycie 1 na figurach 3.7.8.5a – 3.7.8.5j (modele po kolejnych iteracjach). Figura 3.7.8.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatnim figurze 3.7.8.5j, który przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.8.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.8.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.8.5 i 3.7.8.5 j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figurze z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Z punktu widzenia geoelektrycznego w rejonie profilu 1-SG-18 Srebrna Góra (Fig. 3.7.8.6) dominują wysokie wartości oporności. Niskooporowy nadkład związany z osadami neogeńskimi i czwartorzędowym zaglinionym rumoszem skalnym występuje w północno-zachodniej części przekroju. Jego miąższość wynosi do około 100 metrów. Zdecydowanie bardziej interesujące są niskooporowe strefy w obrębie wysokooporowego podłoża. Pierwsza w okolicy sondowań SG_3 i SG-4 sięgająca głębokości około 2 km p.p.m. Rozgałęzia się ona w kierunku sondowania SG_1 na wysokości około -200 m n.p.m. i w kierunku sondowania SG_10 ku powierzchni ziemi. Mogą to być strefy uskokowe (kontaktowe) pomiędzy kataklazytami, brekcjami i mylontami gnejsowymi wieku karbońskiego a prekambryjskimi gnejsami oczkowymi i warstewkowymi. Druga, w okolicy sondowań SG_19 i SG_20 sięga na przekroju geoelektrycznym do głębokości około 2 km p.p.m. Na wysokości -200 m n.p.m. rozgałęzia się ku górze w kierunku sondowania SG_15. Strefa ta może być związana z rozłamami w obrębie prekambryjskich gnejsów. Wyżej wymienione strefy można uznać jako perspektywiczne z punktu widzenia geotermalnego. Obniżone wartości oporności w obrębie wysokooporowych skał uskoki i spękania mogą świadczyć o obecności zmineralizowanych fluidów geotermalnych wypełniających strefy uskokowe i szczeliny.

3.7.9. Obszar Książnica

3.7.9.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.9.1. i 3.7.9.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-KS-18 przedstawiona została na figurach 3.7.9.3 i 3.7.9.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.9.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.9.5 o średnim błędzie kwadratowym (R.M.S.) równym 2.3.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.9.5a – 3.7.9.5j (modele po kolejnych iteracjach) załączonych w zeszycie 1. Figura 3.7.9.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.9.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.9.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.9.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.9.5 i 3.7.9.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Profil 1-KS-18 Ksiażnica (Fig. 3.7.9.6) znajduje się na obszarze, gdzie na całej długości obserwowane sa osady i formy pochodzenia lodowcowego, wodnolodowcowego, formy pochodzenia eolicznego, rzecznego oraz denudacyjnego. W budowie geologicznej omawianego rejonu biorą udział kenozoik a także paleozoik i prekambr. Generalnie obraz geoelektryczny charakteryzuje się wysokimi wartościami oporności. Jak zostało wspomniane na wstępnie na większości obszary znajdują się osady glacjalne, które na przekroju ukazują się jako przypowierzchniowe niskooporowe anomalie. Bazując na dostępnych materiałach geologicznych stwierdzono, że pod pokrywa osadów czwartorzędowych znajduja się w przeważającej ilości gnejsy pochodzenia prekambryjskiego, pod którymi prawdopodobnie znajdują się granity karbońskie. Granity te obserwowane są pod powierzchnią w rejonie sondowań od KS 38 do KS_42. Uwzględniając wyłącznie podwyższone wartości oporności w głębszych partiach modelu wskazano prawdopodobną granicę pomiędzy gnejsami i granitami. Hipoteza ta nie została jednak potwierdzona innymi faktami. W rejonie sondowań od KS 32 do KS_37 obserwowany jest wysokooporowy blok odróżniający się kontrastami oporności od granitów i gnejsów utożsamiany z występowaniem serprentynitów paleozoicznych. Fakt ten został potwierdzony na podstawie analizy map geologicznych. W rejonie sondowań od KS_39 do KS 40 na głębokości poniżej -250 m n.p.m. obserwowana jest rozległa strefa obniżonych oporności, która prawdopodobnie związana jest ze strefa uskokową.

Oprócz tej strefy w centralnej części profilu widoczna jest duża strefa uskokowa, gdzie w jej stropowej części widoczna jest silnie niskooporowa anomalia, którą można uważać jako potencjalna strefa występowania wód termalnych. W kierunku początku profilu można zauważyć dwie strefy o obniżonych opornościach natomiast trudne jest wskazanie charakteru tektonicznego tych stref a co za tym idzie, określenie ich potencjału pod kątem występowania złóż termalnych.

3.7.10 Obszar Kudowa

3.7.10.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.10.1. i 3.7.10.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-KU-18 przedstawiona została na figurach 3.7.10.3 i 3.7.10.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.10.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano modele geoelektryczny przedstawiony na figurze 3.7.10.5 o średnim błędzie kwadratowym (R.M.S.) równym 2.0.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.10.5a – 3.7.10.5j umieszczone w zeszycie 1 (modele po kolejnych iteracjach). Figura 3.7.10.5a przedstawia model geoelektryczny po 2 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.10.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.10.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.10.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.10.5 i 3.7.10.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Pod względem opornościowym obraz wzdłuż profilu 1-KU-18 Kudowa (Fig. 3.7.10.6) jest zróżnicowany. W południowo-zachodniej części przekroju do sondowania Ku_8 niskooporowy nadkład związany z głównie z górnokredowymi marglami. Ich miąższość wynosi do 400 metrów. W centralnej części przekroju (od sondowania Ku_8 do Ku_25) wyinterpretowaną niskooporową warstwę o miąższości około 60 m należy powiązać ze zlepieńcami permskimi. Występujące poniżej permu dwie strefy o obniżonych w stosunku do podłoża opornościach zostały powiązane z fyllitami. Poniżej opisanego nadkładu wyinterpretowane zostały granity, które od sondowania Ku_25 do końca profilu wychodzą na powierzchnię ziemi. Należy jednak stwierdzić, że wyinterpretowane wartości oporności są niższe niż należałoby się spodziewać. W interpretacji geologicznej przedstawiono strefy uskokowe sięgające nawet głębokości 3 km p.p.m., które mogą być wypełnione zmineralizowanymi wodami powodującymi obniżenie oporności. Nie jest jednak wykluczone: obecność stref grafityzacji, występowanie łupków grafitowych oraz innej mineralizacji powodującej obniżenie oporności.

Z geotermalnego punktu widzenia interesująco wyglądają strefy uskokowe w okolicy sondowania od Ku_20 do Ku 24 na wysokości o 0 do około 300 m n.p.m oraz strefa rozpoczynająca się od punktu K8 na poziomie -600-1600 m n.p.m w obu rozwidleniach (Figura 3.7.10.6)

3.7.11. Obszar Stara Łomica

3.7.11.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.11.1. i 3.7.11.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-SL-18 przedstawiona została na figurach 3.7.11.3 i 3.7.11.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.11.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.11.5 o średnim błędzie kwadratowym (R.M.S.) równym 2.5.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.11.5a – 3.7.11.5j (modele po kolejnych iteracjach). Figura 7.10.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.11.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.11.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.11.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.11.5 i 3.7.11.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Na podstawie badań magnetotellurycznych wzdłuż profilu 1-SL-17 Stara Łomnica (Fig. 3.7.11.6) wyinterpretowany został uskok w rejonie sondowań SL_15, SL_16. Południowe, wiszące skrzydło uskoku zbudowane jest z górnokredowych margli, pod którymi występują skały wysokooporowe. Są to prekambryjskie gnejsy lub granitognejsy. Ze względu na brak wyraźnej zmienności opornościowej trudno określić czy występują tutaj utwory czerwonego spągowca (jeśli tak to powinien być on stosunkowo wysokooporowy), a skały wieku permskiego w tym rejonie to zlepieńce, łupki ilaste i piaskowce domieszki ilaste, a więc powinny charakteryzować się raczej niskimi opornościami. Miąższość utworów kredowych w

interpretacji danych magnetotellurycznych (przy założeniu ich niskiej oporności) wynosi w wiszącym skrzydle do stu kilkudziesięciu metrów.

Północne, zrzucone skrzydło zbudowane jest także z margli górnokredowych, być może osadów czerwonego spągowca oraz wysokooporowych skał prekambryjskich. Miąższość kompleksu niskooporowego (kreda i być może czerwony spągowiec) wynosi około 500 metrów.

Zrzut uskoku wynosi około 350 – 400 metrów, a strefa niskooporowa z nim związana na podstawie badań geoelektrycznych ma szerokość około 200 i rozszerza się wraz z głębokością. Najniższe wartości oporności występują na wysokości od -1 do -2 km n.p.m. i strefa ta jest najbardziej interesująca z punktu widzenia geotermalnego.

3.7.12. Obszar Bystrzyca Kłodzka

3.7.12.1. Wyniki interpretacji 1D

Lokalizacja profilu przedstawiona została na figurach 3.7.12.1. i 3.7.12.2. Jednowymiarowe modelowanie (inwersja 1D) wykonane zostało z wykorzystaniem algorytmu Occama dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Interpretacja ilościowa 1D wzdłuż profilu 1-BK-18 przedstawiona została na figurach 3.7.12.3 i 3.7.12.4. Inwersję 1D policzono dla krzywych o orientacji xy i yx układu pomiarowego (polaryzacji magnetycznej i elektrycznej), a wyniki przedstawiono w postaci przekrojów oporności. Uzyskane rozkłady oporności na podstawie inwersji 1D dla krzywych o orientacji xy układu pomiarowego posłużyły jako modele startowe do obliczenia inwersji 2D.

3.7.12.2. Wyniki interpretacji 2D

Dwuwymiarowe modelowanie (inwersja 2D) wykonane zostało z wykorzystaniem algorytmu NLCG (Non-Linear Conjugate Gradient) dostępnego w ramach systemu WinGLink firmy Geosystem Srl. Stosowanie tego algorytmu pozwala w odpowiednich warunkach na rozpoczęcie procesu modelowania inwersyjnego bez szczegółowych założeń odnośnie parametrów ośrodka, czyli modelem startowym może być jednorodna półprzestrzeń. Jednak takie rozwiązanie nie zawsze daje zadowalające rezultaty, dlatego dla rozwiązania tego zadania zdecydowano się przyjąć jako model startowy wyniki inwersji 1D. W wyniku przeprowadzonej inwersji 2D uzyskano model geoelektryczny przedstawiony na figurze 3.7.12.5 o średnim błędzie kwadratowym (R.M.S.) równym 2.2.

Proces przejścia od modelu startowego jednowymiarowego do modelu dwuwymiarowego przedstawiony został na figurach 3.7.12.5a – 3.7.12.5j umieszczone w zeszycie 1 (modele po kolejnych iteracjach). Figura 3.7.12.5a przedstawia model geoelektryczny po 3 iteracji modelu startowego, a więc rozkład oporności zaprezentowany na nim jest bardzo bliski rozkładowi oporności uzyskanemu na podstawie inwersji 1D. Kolejne iteracje powodują dalszą modyfikację modelu aż do modelu zaprezentowanego na ostatniej figurze 3.7.12.5j, która przedstawia wynikowy obraz modelu dwuwymiarowego.

3.7.12.3. Interpretacja geologiczna

Interpretację geologiczną (Fig. 3.7.12.6) wykonano bazując na rozkładzie oporności uzyskanym w wyniku inwersji 2D wg algorytmu NLCG (rozkłady przedstawione na Fig. 3.7.12.5 i 3.7.12.5j), Szczegółowej mapy geologicznej Sudetów oraz dostępnych otworów

archiwalnych. Figura z interpretacją geologiczną to rozkład oporności, na który naniesiono zaproponowane symbole geologiczne lub symbole geologiczne z kolorystyką.

Na geoelektrycznym obrazie w rejonie profilu 1-BK-18 Bystrzyca Kłodzka (Fig. 3.7.12.6) dominują wysokie wartości oporności. Niskooporowy nadkład związany z głównie z górnokredowymi marglami i iłami marglistymi występuje w północno-zachodniej części przekroju. Jego miąższość wynosi na podstawie badań magnetotellurycznych wynosi od kilkudziesięciu do około 400 metrów. W obrębie prekambryjskiego wysokooporowego podłoża reprezentowanego w rejonie profilu głównie przez paragnejsy dwułyszczykowe zauważyć można dwie niskooporowe strefy. Pierwsza w okolicy sondowań BK_2 i BK_3 sięgająca głębokości około 2 km p.p.m. i druga w okolicy w okolicy sondowań BK_14 i BK_15 sięgająca głębokości około 400 m p.p.m. Nie jest wykluczone, że pierwsza niskooporowa strefa jest "bocznym odbiciem" ewentualnego uskoku w dolinie rzeki Bystrzyca, którego szczeliny mogą być wypełnione wodami mineralnymi. Odległość uskoku i źródła wód mineralnych od końca profilu wynosi około 160 metrów. Druga anomalia niskooporowa natomiast jest związana prawdopodobnie z uskokiem na granicy skał prekambryjskich i osadów kredowych.

3.8. Podsumowanie, wnioski i rekomendacje

- 1. W ramach projektu wzdłuż 12 profili wykonano w sumie 401 sondowań magnetotellurycznych.
- 2. Wykonano przetwarzanie danych typu "robust" z referencyjnym punktem magnetycznych dla 401 sondowań magnetotellurycznych.
- 3. Wykonano 12 przekrojów opornościowych 1D wg algorytmu Occama do głębokości 5 km p.p.m., które posłużyły jako modele startowe do inwersji 2D.
- 4. Wykonano 12 przekrojów opornościowych 2D na podstawie algorytmu NLCG do głębokości 5 km p.p.m.
- 5. Na ich podstawie oraz z wykorzystaniem Szczegółowych map geologicznych Sudetów przeprowadzono interpretację geologiczną.
- 6. W ogólnym ujęciu przekroje geoelektryczne charakteryzują się dwudzielną budową składająca się z wysokooporowego podłoża prekambryjskiego oraz względnie niskooporowego nadkładu kredowego, karbońskiego oraz osadów kenozoicznych.
- W obrębie wysokooporowego podłoża wyinterpretowano strefy o obniżonej oporności, które mogą być związane z uskokami lub szczelinami wypełnionymi zmineralizowanymi i ciepłymi fluidami:

- na przekroju 1-ZL-18 Złotoryja pomiędzy sondowaniami ZL_24 - Z_37; ZL_47 - ZL_54,

na przekroju 1-W-18 Wierzchosławice pomiędzy sondowaniami W_1 - W_3; W_12 - W_15; W_21 - W_24; W_39 - W_40,

- na przekroju 1-NA-18 Nagórnik pomiędzy sondowaniami Na_37 - Na_41; Na_51 - Na_53,

- na przekroju 1-ND-18 Niedamirów pomiędzy sondowaniami ND_22 ND_23,
- na przekroju 1GL-18 Głuszyca pomiędzy sondowaniami GL_10 GL_12,
- na przekroju 1-KS-18 Książnica pomiędzy sondowaniami KS_16 KS_25, KS_38 KS_40,
- na przekroju 1-KU-18 Kudowa pomiędzy sondowaniami Ku_1 Ku_8; Ku_16 Ku_24,

- na przekroju 1-SG-18 Srebrna Góra pomiędzy sondowaniami SG_1 - SG_4; SG_16 - SG_22,

- na przekroju 1-SL-18 Stara Łomnica pomiędzy sondowaniami SL_14 SL_17,
- na przekroju 1-BK-18 Bystrzyca Kłodzka pomiędzy sondowaniami BK_11 BK_15,
- Przedstawione przekroje wraz z interpretacją dają wstępny obraz odnośnie badanego rejonu. W przypadku gdyby któryś z rejonów badań był szczególnie perspektywiczny z punktu widzenia poszukiwań geotermalnych konieczne byłoby wykonanie w okolicy dodatkowych co najmniej trzech profili lub najbardziej optymalnie zaprojektowanie badań 3D.
- 9. Ze względu na prawdopodobny uskok oraz źródło wód mineralnych występujące w odległości około 160 m od początku profilu 1-BK-18 Bystrzyca Kłodzka proponuje się wykonanie dodatkowych sondowań MT na południowy-zachód od początku wspomnianego profilu, a następnie wykonanie ponownej interpretacji uwzględniającej dodatkowe wyniki pomiarów.

Literatura i materiały archiwalne

- Bachnacki S., Soćko A., 1984 r. Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część zachodnia. Rejon: Blok karkonoskoizerski i Góry Kaczawskie, Arch. PBG, Warszawa
- Bobiński W., Bojakowska I., Gawlikowska E., Kłonowski M., Koźma J., Lis J., Pasieczna A., Wołkowicz S., 2004: Objaśnienia do Mapy Geośrodowiskowej Polski w skali 1:50 000, Arkusz Kłodzko. PIG, Warszawa
- Bobiński W., Gawlikowska E., Kłonowski M., Koźma J., Lis J., Pasieczna A., Wołkowicz S., 2004a: Objaśnienia do Mapy Geośrodowiskowej Polski w skali 1:50 000, Arkusz Bystrzyca Kłodzka. PIG, Warszawa
- Bobiński W., Gawlikowska E., Kłonowski M., Koźma J., Lis J., Pasieczna A., Wołkowicz S., 2004b: Objaśnienia do Mapy Geośrodowiskowej Polski w skali 1:50 000, Arkusze Kudowa Zdrój i Duszniki Zdrój. PIG, Warszawa
- Bobiński W., Gawlikowska E., Kłonowski M., Koźma J., Lis J., Pasieczna A., Wołkowicz S., 2004c: Objaśnienia do Mapy Geośrodowiskowej Polski w skali 1:50 000, Arkusz Nowa Ruda. PIG, Warszawa
- Bossowski A., Cymerman Z., Grocholski A., Ihnatowicz A., 1995: Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów w skali 1:25 000, Arkusz Jedlina Zdrój. PIG, Warszawa
- Cieśla E., Margul B., 1972; Blok przedsudecki, rejon Strzelina (badania grawimetryczne i magnetyczne), Arch. PBG, Warszawa
- Constable S.C., Parker R.L., Constable C.G., 1987 Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52. p:289-300.
- Cymerman Z., Mapa Tektoniczna Sudetów i Bloku Przedsudeckiego. Skala 1:200000, PIG
- Figuła J., Sada M., 2017: Raport z badań magnetotellurycznych (w rejonie Ciepłowód k. Ziębic) wzdłuż dwóch linii profilowych o łącznej długości 3,6 km), Arch. PBG, Warszawa
- Farbisz J., Stefaniuk M., Wojdyła M., 2001:Rozpoznanie złóż wód termalnych w rejonie Polanicy Zdroju, Arch. PBG, Warszawa
- Farbisz J., Wojdyła M., 2008: "Dokumentacja badań geofizycznych metodą Ciągłego Profilowania Magnetotellurycznego (CPMT) wykonanych w rejonie Lądka Zdroju w celu

głębokiego rozpoznania stref tektonicznych dla potrzeb określenia perspektyw występowania wód geotermalnych, Arch. PBG, Warszawa

- Gamble T.D., Goubau W.M., Clarke J., 1979: Magnetotellurics with remote reference. Geophysics, 44,55-68 in Least Squares. The Quaterly of Applied Mathematics, 2
- Gawlikowska E., Kłonowski M., Koźma J., Lis J., Ordzik K., Pasieczna A., Sztromwasser E., Wołkowicz S., 2004: Objaśnienia do Mapy Geośrodowiskowej Polski w skali 1:50 000, Arkusz Kowary. PIG, Warszawa
- Grocholski W., 1965: Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów w skali 1:25 000, Arkusz Walim. Wydawnictwa Geologiczne, Warszawa
- Grodnicki J., Kruczek T., Soćko A. + zespół, 1983 r. Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego część zachodnia. Podstawowe mapy geofizyczne w skali 1:50 000 i 1:200 000 /wg stanu badań na rok 1981/. Temat: Sudety Zachodnie, 1980 83. Arkusze 1:200 000: Gubin, Zielona Góra, Bogatynia, Jelenia Góra, Leszno, Wałbrzych
- Horbowy K., Gawlikowska E., Maćków A., Ordzik K., Lis J., Koźma J., Pasieczna A., Sobol L., Wołkowicz S., 2004: Objaśnień do Mapy Geośrodowiskowej Polski w skali 1:50 000, Arkusz Bolków. PIG, Warszawa
- Jakubiak H., Nowak J., Soćko A., Zdziarska B., 1988 r.: Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część wschodnia. Sudety Wschodnie, 1986-1990 r. Tom I, Podstawowe mapy geofizyczne, Arch. PBG, Warszawa
- Jakubiak H., Nowak J., Soćko A., Zdziarska B., 1989 r.: Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część wschodnia. Mapy geofizyczne transformowane. Temat: Sudety Wschodnie, 1986-1990. Tom II, Arch. PBG, Warszawa
- Jaworska A., Kowalski A., Dokumentacji badań geoelektrycznych, temat: "Ciepłowody", 1988 r. Archiwum PBG, Warszawa
- Jerzmański J., 1969: Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów w skali 1:25 000, Arkusz Chełmiec. Wydawnictwo Geologiczne, Warszawa
- Jerzmański J., Walczak-Augustyniak M., 1994: Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów w skali 1:25 000, Arkusz Krotoszyce. Wydawnictwa Geologiczne, Warszawa
- Kondracki J., 1998: Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa
- Milewicz J., 1970: Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów w skali 1:25 000, Arkusz Lubomierz. Wydawnictwa Geologiczne, Warszawa
- Okulus H., 1968: Sudety i blok przedsudecki (badania grawimetryczne), Arch. PBG, Warszawa
- Okulus H., Margul B., Kleszcz T.,1974; Sudety, rejon Kłodzka i Węglińca-Zgorzelca (badania grawimetryczne), Arch. PBG, Warszawa
- Pepel A. + zespół, 1985 r. Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla obszaru Sudetów i bloku przedsudeckiego – część zachodnia. Mapy geofizyczne. Temat: Sudety Zachodnie, 1980-1985, Arch. PBG, Warszawa
- Soćko A., Jakubiak H., 1990 r.; Interpretacja geofizyczno-geologiczna wyników badań grawimetrycznych, magnetycznych, geoelektrycznych, sejsmicznych i satelitarnych dla

obszaru Sudetów i bloku przedsudeckiego – część wschodnia. Sudety wschodnie, 1986-1990. Tom III. Kompleksowa interpretacja geofizyczno-geologiczna, Arch. PBG, Warszawa Walczak-Augustyniak M., Szałamacha J., 1980: Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów w skali 1:25 000, Arkusz Mościsko. Wydawnictwa Geologiczne, Warszawa