

Appendix A

Harmonia^{+PL} – procedure for negative impact risk assessment for invasive alien species and potentially invasive alien species in Poland

QUESTIONNAIRE

A0 | Context

Questions from this module identify the assessor and the biological, geographical & social context of the assessment.

a01. Name(s) of the assessor(s):

first name and family name

- 1. Dagny Krauze-Gryz
- 2. Jerzy Romanowski external expert
- 3. Wojciech Solarz

acomm01.	Com	ments:		
		degree	affiliation	assessment date
	(1)	dr	Faculty of Forestry, Warsaw University of Life Sciences - SGGW	22-01-2018
	(2)	dr hab.	Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland	31-01-2018
	(3)	dr	Institute of Nature Conservation, Polish Academy of Sciences in Cracow	26-02-2018

a02. Name(s) of the species under assessment:

nazwa polska:	Wiewiórka czarna
nazwa łacińska:	Sciurus niger Linnaeus, 1758
English name:	Fox squirrel

Unia Europejska Fundusz Spójności

Współfinansowano w ramach projektu nr POIS.02.04.00-00-0100/16 pn. *Opracowanie zasad kontroli i zwalczania inwazyjnych gatunków obcych wraz z przeprowadzeniem pilotażowych działań i edukacją społeczną ze środków Unii Europejskiej w ramach Programu Infrastruktura i Środowisko 2014-2020*

acomm02.	Comments:	
	Polish name (synonym I)	Polish name (synonym II)
	-	-
	Latin name (synonym I)	Latin name (synonym II)
	-	-
	English name (synonym I) Eastern Fox Squirrel	English name (synonym II) —

a03. Area under assessment:

Poland

acomm03. Comments:

a04. Status of the species in Poland. The species is:

	native to Poland
	alien, absent from Poland
Х	alien, present in Poland only in cultivation or captivity
	alien, present in Poland in the environment, not established
	alien, present in Poland in the environment, established
	•

aconf01.	Answer provided with a	low	medium X	high	level of confidence
acomm04.	Comments:				
	According to the UNEP-W	•		•	•

European countries. Poland was not covered by this survey. Currently, trade and breeding of this species is restricted (Regulation of the European Parliament and of the Council (EU) no. 1143/2014 of 22 October 2014 - I), but it is possible that individuals of this species are still traded/exchanged/reared.

a05. The impact of *the species* on major domains. *The species* may have an impact on:

- **X** the environmental domain
- **X** the cultivated plants domain
- X the domesticated animals domain
- X the human domain
- **X** the other domains

acomm05. Comments:

Sciurus niger can potentially compete with the native squirrel *Sciurus vulgaris*, affect birds by eating their eggs and chicks, as well as compete for food at feeders. The species can also damage trees (bark stripping) and eat seeds, affecting both timber production and the regeneration of forests. *Sciurus niger* is a host to many parasites and pathogens, including those dangerous to wild native animals, humans and domesticated animals (e.g. SQFV, West Nile fever, rabies). It can damage cables and buildings.

A1 | Introduction

Questions from this module assess the risk for *the species* to overcome geographical barriers and – if applicable – subsequent barriers of captivity or cultivation. This leads to *introduction*, defined as the entry of *the organism* to within the limits of *the area* and subsequently into the wild.

a06. The probability for *the species* to expand into Poland's natural environments, **as a result of self-propelled expansion** after its earlier introduction outside of the Polish territory is:

X	low medium high					
acon	f02.	Answer provided with a	low	medium	high X	level of confidence
acom	nm06.	Comments: Sciurus niger does not occu in natural environments (L establishing a population existing restrictions on the of its self-propelled expans	inzey et al. 2 of this specie breeding of	016 – B, UNEP-V es in Europe is v	WCMC 2010 · very low, esp	 P). The probability of ecially considering the

a07. The probability for *the species* to be introduced into Poland's natural environments by **unintentional human actions** is:

X low medium high	n				
aconf03.	Answer provided with a	low	medium	high X	level of confidence
acomm07.	Comments:				
	Unintentional introductio species has increased its intentional introductions (range of oc	currence by na		•

a08. The probability for *the species* to be introduced into Poland's natural environments by **intentional human actions** is:

IowXmediumhigh					
aconf04.	Answer provided with a	low	medium X	high	level of confidence
acomm08.	Comments:				
	Bertolino (2009 – P) repor and two into Canada. Palm one into Ontario (Canada formation of a population a small number (<20) of in al. 2007 – P). Probablity th new, viable popualtion is H (Bertolino 2009 – P). Fox 2010 – P), possibly in Pola Currently, their breeding individuals of this species we can expect more than squirrel from captivity per	ner et al. (200 a). Most of t increasing its dividuals may at a released nigher than 5 squirrels use and as well, a is significant are still illega o 1, but no r	P) reporte the introduction size (Bertolinon y result in the pair of individ 0% and rises we d to be sold a s gray squirrel ly restricted. ally traded/exc	d 9 introductions (37 out co 2009 – P). Ex formation of a uals of Sciurus with the numb and reared in ls were (Krauz However, it i hanged. In th	ons into US states and of 44) resulted in the ven the introduction of a population (Wood et s genus will establish a ber of released animals Europe (UNEP-WCMC ze and Gryz 2012 – P). s not impossible that e worst case scenario,

A2 | Establishment

Questions from this module assess the likelihood for *the species* to overcome survival and reproduction barriers. This leads to *establishment*, defined as the growth of a population to sufficient levels such that natural extinction within *the area* becomes highly unlikely.

a09. Poland provides climate that is:

	non-optimal
	sub-optimal
Х	optimal for establishment of the species

aconf05.	Answer provided with a	low	medium	high X	level of confidence
----------	------------------------	-----	--------	-----------	---------------------

acomm09. Comments:

Sciurus niger occurs in most of the eastern areas of the United States, parts of Canada, and in Mexico (Linzey et al. 2016 – B). The species tolerates a wide range of temperatures (Koprowski and Doumas 2011 – I). It is assumed that the mean annual temperature should be between 8 and 23 degrees Celsius, the mean maximum temperature in the warmest month between 23 and 41 degrees, and the mean lowest temperature in the coldest month between -22 and 7 degrees. It should therefore be concluded that the climate of Poland, especially in the west and south of the country, is suitable for the fox squirrel. Introductions of fox squirrel to many US states and into Canada were successful (Palmer et al. 2007, Bertolino 2009 – P), including in areas with climatic conditions similar to those in Poland. Considering the above, the climate of Poland is optimal for the establishment of this species.

a10. Poland provides habitat that is

	non-optimal
	sub-optimal
Х	optimal for establishment of the species

aconf06. Answer provided with a low medium high level of co	ifidence
---	----------

acomm10. Comments:

The species lives in many types of forests, riverside woodlands, mosaics of woodlands and agricultural areas, urban areas, and other areas transformed by human activity (Hoffmann et al. 1969, Burt and Grossenheider 1976, Allen 1982, King et al. 2010 – P). The species has the highest population density in deciduous and mixed forests formed by trees providing a rich food base (oak, hickory, pine) (Koprowski 1994 – P). In Poland, about 50% of the forest area is in forest habitats; mixed forests are grown instead of pine and spruce monocultures, the share of deciduous forests is increasing, the share of deciduous tree species is increasing, including oak, ash, maple and hornbeam (State Forests 2016 - I), which are species offering attractive energy-rich seeds. The fox squirrel is well adapted to altered ecosystems (e.g. agricultural) (Greene and McCleery 2017 - P). It also lives in transition zones between forests and open areas (prairies, King et al. 2010 - P), as well as in tree stands surrounded with arable fields (Allen 1982 - P). It shows great tolerance to anthropogenic transformations of the environment (Salsbury et al. 2004 - P), and is well adapted to urban areas (Mc Cleery et al. 2007, Salsbury 2008 - P). It can therefore be assumed that the availability of suitable habitats for the species in Poland is high. In addition, the fox squirrel may use food provided by humans (peanuts, dog food, leftovers in rubbish bins), which is especially important during periods of food shortage (Ortiz and Muchlinski 2015 – P).

A3 | Spread

Questions from this module assess the risk of *the species* to overcoming dispersal barriers and (new) environmental barriers within Poland. This would lead to spread, in which vacant patches of suitable habitat become increasingly occupied from (an) already-established population(s) within Poland.

Note that spread is considered to be different from range expansions that stem from new introductions (covered by the Introduction module).

a11. The capacity of *the species* to disperse within Poland by natural means, **with no human assistance**, is:

X	very low low medium high very hig					
acc	onf07.	Answer provided with a	low	medium	high X	level of confidence
acc	omm11.	Comments: Spread of populations (Dat The fox squirrel has the ca – P). It is not sensitive to large open areas (Wright along watercourses (Wright such as bridges (Wright ar The fox squirrel spreads colonizing urban areas an spread of this species has 2010 – P), and 6.84 km/ye this species in Los Angeles The longest reported dista	pacity to dispe- habitat fragm and Weber 19 at and Weber 197 to the west d areas fores been estimate ar (Clayton et s at a rate of	nentation (Sals 979 – P), and c 1979, King et a '9 – P), and ca of the US, u ted with decic ed at 0.44-3.44 : al. 2015 – P). 1.5-3.0 km/yea	bury 2008 – can disperse al. 2010 – P) bling system sing corrido duous trees 4 km/year in Recent repo ar (Garcia an	P). It can travel across via ecological corridors , engineering structures s (King et al. 2010 – P). rs along watercourses, (Geluso 2004 – P). The Los Angeles (King et al. orts reveal the spread of d Muchlinski 2017 – P).

a12. The frequency of the dispersal of *the species* within Poland by **human actions** is:

IowXmediumhigh	i				
aconf08.	Answer provided with a	low	medium X	high	level of confidence
acomm12.	Comments:				
Assuming that the fox squirrel becomes established in Poland, trans will be possible. Squirrels are appealing animals that raise positive humans can significantly contribute to the dispersal of these animals et al. 2015 – I). King (2010, after Clayton et al. 2015 – P) rep intentional dispersal of squirrels in Los Angeles; problematic individu released in parks and on golf courses, which led to a significant inc occurrence. Similar conclusions were reached by Garcia and M Considering the current restrictions on breeding the fox squirrel, r expected, but no more than 10 such cases per decade.					re feelings in people, so als into new sites (Baiwy eported many cases of duals were captured and acrease in their range of Muchlinski (2017 – P).

A4a | Impact on the environmental domain

Questions from this module qualify the consequences of *the species* on wild animals and plants, habitats and ecosystems.

Impacts are linked to the conservation concern of targets. Native species that are of conservation concern refer to keystone species, protected and/or threatened species. See, for example, Red Lists, protected species lists, or Annex II of the 92/43/EWG Directive. Ecosystems that are of conservation concern refer to natural systems that are the habitat of many threatened species. These include natural forests, dry grasslands, natural rock outcrops, sand dunes, heathlands, peat bogs, marshes, rivers & ponds that have natural banks, and estuaries (Annex I of the 92/43/EWG Directive).

Native species population declines are considered at a local scale: limited decline is considered as a (mere) drop in numbers; severe decline is considered as (near) extinction. Similarly, limited ecosystem change is considered as transient and easily reversible; severe change is considered as persistent and hardly reversible.

a13. The effect of *the species* on native species, through predation, parasitism or herbivory is:

inapplic low X mediun high						
aconf09.	Answer provided with a	low	medium X	high	level of confidence	
acomm13.	birds through predation. It eggs and chicks) (Koprow available in the literature (contributing to their dispe- species composition of for south-eastern US, the fox flowers and seeds (Koprow Bark stripping is a commor noted on elm, poplar and C There are no exact estimat	X				

Bertolino 2009 – P). If *Sciurus niger* spreads across Poland, a slight decline in the population of birds can be expected (including passerine species of special concern), as well as a locally significant impact on woodstands (e.g. formed by beech, oak and other trees).

a14. The effect of *the species* on native species, through competition is:

>	low medium (high					
ac	conf10.	Answer provided with a	low X	medium	high	level of confidence
acomm14. Comments:						
		Sciurus niger has a negating griseus, Tamiasciurus dou Merwe et al. 2005 – P, K coexistence with other sp Der Merwe et al. 2005 – squirrel Sciurus carolinem a similar environmental n and use similar shelters (S the access of grey squirr squirrels can find alternat fox squirrels coexist with	glasii, S. albo oprowski and pecies of squi P). In some a sis (Muchlin iche as the g iteel and Kop rels to abund ive food (Bai	erti) through c d Doumas 2013 rrels depends areas of Califor ski et al. 2009 rey squirrel. Th rowski 2001 – dant food sour wy et al. 2015	ompetition 1, Baiwy et on the qua rnia, <i>Sciurus</i> 9 – P). The hey have sin I). On one H rces, but on – I). Becaus	for resources (Van der al. 2015 – I). Potential lity of the habitat (Van <i>niger</i> displaced native fox squirrel occupies milar food preferences, nand, fox squirrels limit in the other hand grey se in none of the areas

species. However, it can be assumed that fox squirrels pose a threat to red squirrels (Baiwy et al. 2015 - I). If the fox squirrel spreads on a large scale, it may cause a locally significant decline in the population of the red squirrel. Fox squirrels may also compete with birds for food in feeders, which can be important especially in urban areas (Krause et al. 2010, Pennisi and Vantassel 2012 - I).

a15. The effect of *the species* on native species, through **interbreeding** is:

Х	no / very low									
	low	low								
	medium									
	high									
	very hig	;h								
acon	nf11.	Answer provided with a	low	medium	high	level of confidence				
					Х					
acon	nm15.	Comments:								
There are no data indicating the possibility of the fox species of squirrels (Baiwy et al. 2015 – I).					x squirrel i	nterbreeding with other				

a16. The effect of *the species* on native species by hosting pathogens or parasites that are harmful to them is:

ne ei	fect of the	species on native species b	y nosting patr	logens or para	isites that are	narmful to them is:
	very low low medium high					
X	very high	1				
acoi	nf12.	Answer provided with a	low	medium	high X	level of confidence
aco	nm16.	Comments:				
acomm16. Comments: Fox squirrels can trabacterial diseases, and al. 2008, Goldberg aidentified) (Najberek endo- and ectoparasi of rabies (OIE list), cl A case of rabies in the The fox squirrel may (Samuel et al. 2001) (its definitive host) in Baiwy et al. (2015 – 1) only for the Wester leptospirosis, Lyme (including <i>Balisascar</i> many ectoparasites. 2017 – P). The spect frequently infecting the rapid displacem (Wilcoxen et al. 2015 fox squirrel may pos from the grey squirrer al. 2014, 2015 – P). For areas, it is difficult to parasites. However, the spect of the section o		bacterial diseases, and are al. 2008, Goldberg et al. identified) (Najberek 2018 endo- and ectoparasites is of rabies (OIE list), cholera A case of rabies in the fox The fox squirrel may also b (Samuel et al. 2001 – P, (its definitive host) may co Baiwy et al. (2015 – I) the f only for the Western Nil leptospirosis, Lyme disea (including <i>Balisascaris pro</i> many ectoparasites. <i>Sciure</i> 2017 – P). The species w frequently infecting grey s the rapid displacement of (Wilcoxen et al. 2015 – P). fox squirrel may pose a the from the grey squirrel <i>Sciur</i> al. 2014, 2015 – P). Becaus areas, it is difficult to asses parasites. However, there i	smit viral diseases (Pinger et al. 1975, Bewick et al. d are hosts to endo- and ectoparasites (Coyner et al. t al. 2014 – P) (41 different pathogens and parasi 2018 – N)). The prevalence of West Nile fever (on the es is high in the population of this species. In contrast, olera and equine encephalitis (OIE list) is low (Baiwy e fox squirrel was reported from California (Cappucci et also be an intermediate host for the nematode <i>Balisas</i> – P, Baiwy et al. 2015 – I), which in areas occupie ay contribute to the spread of this dangerous parasit the fox squirrel can transmit 6 different viruses (with n Nile virus), 4 bacterial diseases (tularaemia - OI disease), dermatophytosis (<i>Sporothrix schenckii</i>), 6 <i>s procyonis, Strongyloides robustus, Heligmodendriur</i> <i>Sciurus niger</i> is an important reservoir of Lyme dise es was also found to carry SQFV (squirrel fibroma rey squirrels (may cause epizootics), similar to the o nt of the red squirrel by the grey squirrel in the U – P). <i>Strongyloides robustus</i> (an alien nematode specie a threat to the native red squirrel: the transmission <i>Sciurus carolinensis</i> to the red squirrel has been repo exause the fox squirrel and the red squirrel do not occ assess its potential impact through the transmission of here is a lot of evidence that competition between the e prevalence and transmission of pathogens and parasi	er et al. 1996, Foley et parasites have been (on the OIE list), and ontrast, the prevalence (Baiwy et al. 2015 – I). opucci et al. 1972 – P). <i>Balisascaris procyonis</i> occupied by raccoons parasite. According to s (with high frequency ia - OIE list, cholera, <i>ckii</i>), 6 endoparasites <i>lendrium hassalli</i>) and ne disease (Roy et al. ibroma virus), a virus o the one that causes in the United Kingdom e species) found in the nission of this parasite en reported (Romeo et not occur in the same ission of pathogens or een these species may		

a17. The effect of *the species* on ecosystem integrity, by affecting its abiotic properties is:

X	low mediun high	1				
acon	f13.	Answer provided with a	low	medium X	high	level of confidence
acom	1m17.	Comments: No data are available on t ecosystems.	the negative	impact of the f	ox squirrel	on abiotic properties of

a18. The effect of the species on ecosystem integrity, by affecting its biotic properties is:

X	low medium high						
aconf14.		Answer provided with a	low	medium X	high	level of confidence	
acomm18.		Comments:					
		Because squirrels feed on therbivory, affect the age still. Feeding on seeds can also the other hand, by burying (Stapanian and Smith 198 food shortage, may reduce species spreads on a wide reverse changes (in the shifthat are not classified as hard	tructure and s so affect the r g seeds in ope 6 - P). Bark the resistance scale in the port term pers	species composing regeneration of en areas squirre stripping, a free ce of forests ar e natural enviro spective) in the	ition of for forests (Blue share the second quent behand even cau ponment, we processes	ests (Baiwy et al. 2015 – ythe et al. 2015 – P). On mote natural succession aviour during periods of use their die back. If the e can expect difficult to taking place in habitats	

A4b | Impact on the cultivated plants domain

Questions from this module qualify the consequences of *the species* for cultivated plants (e.g. crops, pastures, horticultural stock).

For the questions from this module, consequence is considered 'low' when presence of *the species* in (or on) a population of target plants is sporadic and/or causes little damage. Harm is considered 'medium' when *the organism's* development causes local yield (or plant) losses below 20%, and 'high' when losses range >20%.

a19. The effect of *the species* on cultivated plant targets through **herbivory or parasitism** is:

X	inapplica very low low medium high very higl					
асо	nf15.	Answer provided with a	low	medium X	high	level of confidence
aco	mm19.	Comments: <i>Sciurus niger</i> eats many p	lant and anir	mal foods, inclu	ding seeds, r	nuts, tree bark, as well

Sciurus niger eats many plant and animal foods, including seeds, nuts, tree bark, as well as crops: cereal grains, maize, soy, nuts and fruits (Baiwy et al. 2015 – I). Because squirrels feed on tree seeds, they can affect the age structure and species composition of forests (Koprowski 1994, Steele et al. 2001, Steele et al. 2005, Steele 2008 – P, Baiwy

et al. 2015 – I). Bark stripping may reduce the quality of timber and cause die back of trees. There are no exact estimates of the scale of bark-stripping, but it seems that the impact of the fox squirrel is less significant than that of other squirrel species (Palmer et al. 2007, Bertolino 2009 - P). There are reports of damage caused by foraging and bark stripping by this species in pine plantations and orchards (Jackson 1994 – P), cereal crops (Burt and Grossenheider 1976 - P), and home gardens (Koprowski 1994 - P). In California, where Sciurus niger was introduced, it is seen as a serious pest (the largest of the four species of squirrels living there) of crops in urban and suburban areas. It causes damage in home gardens, but also in commercial crops (Baldwin 2016, Salmon et al. 2006 – I). Squirrels eat seeds, fruits, strip bark, and dig out plant bulbs (Pierce 2012 – I). They feed on maize, nuts (pecans, walnuts), avocado, oranges and strawberries (Salmon et al. 2006 - I). Losses are usually estimated at a medium level (review in Baiwy et al. 2015 – I), but may be high on a local scale (Frey et al. 2013 – P). If Sciurus niger is widely spread in Poland, we can expect that it may impact 1/3 to 2/3 of cultivated plant targets (probability - medium), and in the worst case scenario the health of plants or the yield of a single crop will be reduced by more than 20% (effect – high).

a20. The effect of *the species* on cultivated plant targets through competition is:

X	inapplica very low low medium high very hig	,				
acon	f16.	Answer provided with a	low	medium	high	level of confidence
acon	nm20.	Comments: Sciurus niger is not a plant	species.	·		

a21. The effect of *the species* on cultivated plant targets through **interbreeding** with related species, including the plants themselves is:

X	inapplic no / ver low medium high very hig	y low ו				
acon	ıf17.	Answer provided with a	low	medium	high	level of confidence
acon	nm21.	Comments:				

a22. The effect of the species on cultivated plant targets by affecting the cultivation system's integrity is:

Sciurus niger is not a plant species.

		very low	,				
	Х	low					
		medium					
		high					
		very hig	h				
					1		1
ć	acon	f18.	Answer provided with a	low	medium	high	level of confidence
					x		

acomm22. Comments:

Through feeding on seeds and damaging trees it can cause changes in the species composition of crops, which may result in changes in the composition of flora and fauna. We can expect that it may impact less than 1/3 to of cultivated plant target (probability – low), and in the worst case scenario the health of plants or the yield of a single crop will be reduced by about 5% to 20% (result – medium).

a23. The effect of *the species* on cultivated plant targets by hosting **pathogens or parasites** that are harmful to them is:

lov me X hig	dium					
aconf19		Answer provided with a	low X	medium	high	level of confidence
acomm2	.3.	Comments:				
		Experimental studies den disease of oaks (<i>Ceratocys</i> disease include discolourat of the tree (Himelick and	<i>tis fagacearu</i> tion of leaves	um), included in , their wilting, d	the A1 EPP efoliation, a	O list. Symptoms of the and eventually the death

under natural conditions.

A4c | Impact on the domesticated animals domain

Questions from this module qualify the consequences of *the organism* on domesticated animals (e.g. production animals, companion animals). It deals with both the well-being of individual animals and the productivity of animal populations.

a24. The effect of *the species* on individual animal health or animal production, through **predation or parasitism** is:

X	inapplic very low low medium high very hig					
acon	f20.	Answer provided with a	low	medium X	high	level of confidence
acon	nm24.	Comments:				
		There are no reports on the animals through predation.		f Sciurus niger o	on producti	on animals or domestic

a25. The effect of *the species* on individual animal health or animal production, by having properties that are hazardous upon **contact**, is:

	very low
Х	low
	medium
	high
	very high

aconf21.	Answer provided with a	low	medium X	high	level of confidence
acomm25.	Comments:				
	A fox squirrel when attacke in Poland, we can expect 100,000 animals per year, a	the frequence	cy of such inci	idents to ran	ge from 1 to 100 per

a26. The effect of *the species* on individual animal health or animal production, by hosting **pathogens or parasites** that are harmful to them, is:

ve lo m hi	applica ery low w nedium igh ery high					
aconf22	2.	Answer provided with a	low	medium	high X	level of confidence
acomm	126.	Comments:				
Sciurus niger transmits rabies (Cappuccini et al. 1972, Leitheser 2013 – I). This disease is incurable, and its cases must be reported to the relevant authorities. Although squirrels are rare carriers of rabies, the risk of contact between an infected animal and a dog or cat cannot be ruled out. There are also two diseases that are transmitted by mosquitoes (WNV, West Nile virus and VEE, virus of equine encephalitis (Leitheser 2013 - I, Weaver et al. 1997 – P)), which are reported in squirrels and create a hazard to production and						

A4d | Impact on the human domain

Questions from this module qualify the consequences of *the organism* on humans. It deals with human health, being defined as a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity (definition adopted from the World Health Organization).

domestic animals: horses, rabbits, cats and dogs.

a27. The effect of *the species* on human health through parasitism is:

X	inapplica very low low medium high vert high					
acoi	nf23.	Answer provided with a	low	medium	high	level of confidence
асон	mm27.	Comments: <i>Sciurus niger</i> is not a paras	itic species.	•		

a28. The effect of *the species* on human health, by having properties that are hazardous upon **contact**, is:

	very low
Х	low
	medium
	high
	very high

aconf24.	Answer provided with a	low	medium X	high	level of confidence
acomm28.	Comments: Fox squirrels may inflict pa (e.g. with peanuts).If this s incidents to range from medium). However, the disabilities (effect – low).	species spread 1 to 100 cas	ls in Poland, w ses per 100,0	ve can expect 00 people pe	the frequency of such er year (probability –

a29. The effect of *the species* on human health, by hosting pathogens or parasites that are harmful to humans, is:

x	inapplic very low low medium high very hig	<i>v</i>				
асо	nf25.	Answer provided with a	low	medium X	high	level of confidence
асо	mm29.	Comments:				
		Fox squirrels can transmit bacterial diseases, and are al. 2008, Goldberg et al. identified) (Najberek 2018 a disease deadly for huma rabies transmission. An ad be considered by injured medical interventions (adu transmitted by mosquitoe a potentially deadly diseas may contract dermatophy with humans may be freq 2015 – I, Bewick et al. 2017	e hosts to end 2014 – P) (– N)). Sciurus ins. If the spe ditional hazar persons as l ministration o s (WNV, Wes se). In additio tosis, especia juent. Sciurus 16 – P). Sciurus	do- and ectopar 41 different par 5 niger transmits eccies spreads in rd comes from hazardous to h of serum). Ther st Nile virus and on, upon direct ally in urban are 5 niger may also	rasites (Coyr athogens ar s rabies (Cay Poland, the the fact tha nealth, whic re are also d VEE, virus contact wi eas, where o transmit t	her et al. 1996, Foley et ad parasites have been opuccini et al. 1972 – P), ere is a potential risk of at squirrel bites may not th may delay necessary two important diseases of equine encephalitis, th the species, humans contacts of this species tularaemia (Baiwy et al.

A4e | Impact on other domains

Questions from this module qualify the consequences of *the species* on targets not considered in modules A4a-d.

a30. The effect of *the species* on causing damage to **infrastructure** is:

very lowlowXmediurhighvery high	n				
aconf26.	Answer provided with a	low	medium X	high	level of confidence
acomm30.	Comments:				
	Like all species of arboreal along them and biting the (Pierce 2012, Baldwin 2016) al. 2010 – I). We can expe	em), enter l 5 – l), and da	buildings, dama mage irrigation	ge insulationsystems and	on, build nests in attics d car engines (Krause et

100,000 structures per year (probability – medium), and the effects of such incidents should be reversible in part (result – result).

A5a | Impact on ecosystem services

Questions from this module qualify the consequences of *the organism* on ecosystem services. Ecosystem services are classified according to the Common International Classification of Ecosystem Services, which also includes many examples (CICES Version 4.3). Note that the answers to these questions are not used in the calculation of the overall risk score (which deals with ecosystems in a different way), but can be considered when decisions are made about management of *the species*.

a31. The effect of the species on provisioning services is:

significantly negative
 moderately negative
 neutral
 moderately positive
 significantly positive

aconf27.	Answer provided with a	low	medium X	high	level of confidence
acomm31.	Comments:				
	The few countrel can offee	t the wood in	ductry Dy da	maging the h	ark of troop it caused

The fox squirrel can affect the wood industry. By damaging the bark of trees it causes a decrease in the quality and quantity of produced timber. As a pest in horticulture, it can affect the production of fruits and nuts. By feeding on cereals (e.g. maize) it can have a negative effect on food production. In addition, by transmission of pathogens and parasites to livestock, it can affect animal production.

a32. The effect of the species on regulation and maintenance services is:

X	moderat neutral moderat	ntly negative tely negative tely positive ntly positive				
acor	nf28.	Answer provided with a	low	medium X	high	level of confidence
acon	nm32.	Comments:				
		Because the fox squirrel transmits pathogens and parasites, it affects biological regulation (regulation of zoonoses). In addition, it affects the pollination of flowers and dispersal of seeds, both in the positive (natural regeneration) and negative context (feeding on flowers and seeds).				

a33. The effect of the species on cultural services is:

X	moderat neutral moderat	ntly negative tely negative tely positive ntly positive				
acon	ıf29.	Answer provided with a	low	medium	high X	level of confidence

acomm33. Comments:

The fox squirrel may be perceived by some people as an appealing and desirable element of the natural environment. However, due to the fact that its presence may cause a decline in the number or total extinction of the red squirrel, and also cause damage to forests, gardens and buildings, its presence may also be assessed as significantly negative. Therefore, the overall effect of this species was assessed as neutral.

A5b | Effect of climate change on the risk assessment of the negative impact

of the species

Below, each of the Harmonia^{+PL} modules is revisited under the premise of the future climate. The proposed time horizon is the mid-21st century. We suggest taking into account the reports of the Intergovernmental Panel on Climate Change. Specifically, the expected changes in atmospheric variables listed in its 2013 report on the physical science basis may be used for this purpose. The global temperature is expected to rise by 1 to 2°C by 2046-2065.

Note that the answers to these questions are not used in the calculation of the overall risk score, but can be but can be considered when decisions are made about management of *the species*.

a34. INTRODUCTION – Due to climate change, the probability for *the species* to overcome geographical barriers and – if applicable – subsequent barriers of captivity or cultivation in Poland will:

X	decrease not char increase	e significantly e moderately nge moderately significantly					
acor	nf30.	Answer provided with a	low	medium X	high	level of confidence	
acomm34.		Comments: The introduction of the species will be possible mainly due to intentional human actions, regardless of climate change. Climate change is unlikely to influence the capacity of the fox squirrel to overcome geographical barriers.					

a35. ESTABLISHMENT – Due to climate change, the probability for *the species* to overcome barriers that have prevented its survival and reproduction in Poland will:

X	decrease not char increase	e significantly e moderately nge e moderately e significantly				
acor	nf31.	Answer provided with a	low	medium X	high	level of confidence
	~ =					

acomm35. Comments:

The fox squirrel can become established in Poland even under the present climate. However, it seems that climate warming (milder winters, higher seed production of deciduous tree species) will increase the probability of establishment.

a36. SPREAD – Due to climate change, the probability for *the species* to overcome barriers that have prevented its spread in Poland will:

decrease significantly decrease moderately

>	not change X increase moderately increase significantly							
ac	conf32.	Answer provided with a	low	medium X	high	level of confidence		
acomm36.		Comments: The fox squirrel is able to seems that under a warm reasons, due to the great new areas by the fox squir higher share of deciduous acorns).	er climate the er food base) rel. Milder wi	e probability of . Milder winte inters may resu	f spread will rs will prom ult in higher	I increase, among other note the colonization of winter survivability and		

a37. IMPACT ON THE ENVIRONMENTAL DOMAIN – Due to climate change, the consequences of *the species* on wild animals and plants, habitats and ecosystems in Poland will:

)	decrease significantly decrease moderately not change X increase moderately increase significantly					
ac	conf33.	Answer provided with a	low	medium X	high	level of confidence
ac	comm37.	Comments:				

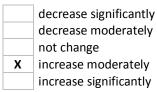
Because the milder climate can contribute to an increase in the population size and range of this species, we can also expect a stronger negative impact of the fox squirrel on the natural environment.

a38. IMPACT ON THE CULTIVATED PLANTS DOMAIN – Due to climate change, the consequences of *the species* on cultivated plants and plant domain in Poland will:

d n X ir	ecrease ot char ncrease	e significantly e moderately nge moderately significantly				
aconf3	4.	Answer provided with a	low	medium X	high	level of confidence
acomm	า38.	Comments:				
	Because the milder climate can contribute to an increase in the population size and ran of this species, we can also expect a stronger negative impact of the fox squirrel cultivated plants.					

a39. IMPACT ON THE DOMESTICATED ANIMALS DOMAIN – Due to climate change, the consequences of *the species* on domesticated animals and animal production in Poland will:

	decrease significantly			
	decrease moderately			
	not change			
Х	increase moderately			
	increase significantly			


aconf35.	Answer provided with a	low	medium X	high	level of confidence
----------	------------------------	-----	--------------------	------	---------------------

acomm39. O

Comments:

Because the milder climate can contribute to an increase in the population size and range of this species, we can also expect a stronger negative impact of the fox squirrel on domesticated animals.

a40. IMPACT ON THE HUMAN DOMAIN – Due to climate change, the consequences of *the species* on human in Poland will:

aconf36.	Answer provided with a	low	medium X	high	level of confidence
acomm40.	Comments:				
	Because the milder climate of this species, we can als				0

human domain.

domains.

a41. IMPACT ON OTHER DOMAINS – Due to climate change, the consequences of *the species* on other domains in Poland will:

X	decrease significantly decrease moderately not change increase moderately increase significantly						
aconf37.		Answer provided with a	low	medium X	high	level of confidence	
aco	omm41.	Comments:					
Because the milder climate can contribute to an increase in the population size and of this species, we can also expect a stronger negative impact of the fox squirrel on							

Summary

Module	Score	Confidence
Introduction (questions: a06-a08)	0.17	0.83
Establishment (questions: a09-a10)	1.00	1.00
Spread (questions: a11-a12)	0.63	0.75
Environmental impact (questions: a13-a18)	0.50	0.58
Cultivated plants impact (questions: a19-a23)	0.58	0.33
Domesticated animals impact (questions: a24-a26)	0.42	0.67
Human impact (questions: a27-a29)	0.63	0.50
Other impact (questions: a30)	0.50	0.50
Invasion (questions: a06-a12)	0.60	0.86

Impact (questions: a13-a30)	0.63	0.52	
Overall risk score	0.37		
Category of invasiveness	moderately invasive alien species		

A6 | Comments

This assessment is based on information available at the time of its completion. It has to be taken into account, however, that biological invasions are, by definition, very dynamic and unpredictable. This unpredictability includes assessing the consequences of introductions of new alien species and detecting their negative impact. As a result, the assessment of the species may change in time. For this reason it is recommended that it is regularly repeated.

Data sources

1. Published results of scientific research (P)

Allen WW. 1982. Habitat suitability index models: fox squirrel. U.S. Fish and Wildlife Services. Fort Collins, Colorado. FWS/OBS-82/10.18

Bertolino S. 2009. Animal trade and non-indigenous species introductions: the world-wide spread of squirrels. Diversity and Distributions 15: 701-708

Bewick S, Agusto F, Calabrese JM, Muturi EJ, Fagan WF. 2016. Epidemiology of La Crosse Virus Emergence, Appalachia Region, United States. Emerging infectious diseases 22: 1921-1929

Blythe RM, Smyser TJ, Swihart RK. 2015. Tree squirrel seed predation patterns may influence American chestnut restoration success. New Forests 46: 593-600

Burt WH, Grossenheider RP. 1976. A field guide to the mammals. Field marks of all North American species found north of Mexico. Houghton Mifflin Company, Boston

Cappucci DT Jr, Emmons RW, Sampson WW. 1972. Rabies in eastern fox squirrel. Journal of Wildlife Diseases 8: 340-342

Clayton SC, Muchlinski AE, Torres E. 2015. Multiple introductions of the eastern fox squirrel (Sciurus niger) in California. Mitochondrial DNA 26: 583-592

Coyner DF, Wooding JB, Forrester DJA. 1996. A comparison of parasitic helminths and arthropods from two subspecies of fox squirrels (*Sciurus niger*) in Florida. Journal of Wildlife Diseases 32: 492-497

Foley JE, Nieto NC, Adjemian J, Dabritz H, Brown RN. 2008. *Anaplasma phagocytophilum* Infection in Small Mammal Hosts of Ixodes Ticks, Western United States. Emerging infectious diseases 14: 1147-1150

Frey JK, Iglesias J, Herman K. 2013. Eastern Fox Squirrel (*Sciurus Niger*): New Threat to Pecan Orchards in Far West Texas. Western North American Naturalist 73: 382-385

Garcia RB, Muchlinski AE. 2017. Range Expansion of the Eastern Fox Squirrel within the Greater Los Angeles Metropolitan Area (2005-2014) and Projections for Continued Range Expansion. Bulletin of the Southern California Academy of Sciences 116: 33-45

Geluso K. 2004. Westward expansion of the eastern fox squirrel (*Sciurus niger*) in northeast New Mexico and sountheastern Colorado. The Southeastern Naturalist 49: 111-116

Goldberg TL, Gendron-Fitzpatrick A, Deering KM, Wallace RS, Clyde VL, Lauck M, Rosen GE, Bennett AJ, Greiner EC, O'Connor DH. 2014. Fatal Metacestode Infection in Bornean Orangutan Caused by Unknown Versteria Species. Emerging infectious diseases 20: 109-113

Greene DU, McCleery RA. 2017. Multi-scale responses of fox squirrels to land-use changes in Florida: Utilization mimics historic pine savannas. Forest Ecology and Management 391: 42-51

Himelick EB, Curl EA. 1955. Experimental transmission of the oak wilt fungus by caged squirrels. Phytopathology 45: 581-584

Hoffmann RS, Wright PL, Newby FE. 1969. The distribution of some mammals in Montana I. Mammals other than bats. Journal of Mammalogy 50: 579-604.

Jackson JJ. 1994. Tree squirrels. In: Hygnstrom SE, Timm RM, Larson GE. (eds.) The handbook: prevention and control of wildlife damage, pp. 171-176. University of Nebraska, Lincoln

King JL, Chung Sue M, Muchlinski AE. 2010. Distribution of the Eastern fox squirrel (*Sciurus niger*) in Southern California. The Southeastern Naturalist 55: 42-49

Koprowski JL. 1994. Sciurus niger. Mammalian Species 479: 1-9

Krauze D, Gryz J. 2012. Wiewiórka szara (*Sciurus carolinensis*) w Polsce: science fiction czy realne zagrożenie? Studia i Materiały CEPL w Rogowie 33: 327-334

McCleery RA, Lopez RR, Silvy NJ, Kahlick SN. 2007. Habitat use of fox squirrels in an urban environment. The Journal of Wildlife Management 71: 1149-1157

Muchlinski A, Stewat G, KIng J, Lewis S. 2009. Documentation of replacement of native western gray squirrels by introduced eastern fox squirrels. Bulletin of the Southern California Academy of Sciences 108: 160-162

Newson SE, Leech DI, Hewson CM, Crick HQP, Grice PV. 2010. Potential impact of grey squirrels *Sciurus carolinensis* on woodland bird populations in England. Journal of Ornithology 151: 211-218

Ortiz JL, Muchlinski AE. 2015. Food Selection of Coexisting Western Gray Squirrels and Eastern Fox Squirrels in a Native California Botanic Garden in Claremont, California. Bulletin of the Southern California Academy of Sciences 114: 98-103

Palmer GH, Koprowski J, Pernas T. 2007. Tree squirrels as invasive species: conservation and management implications. In: Witmer GH, Pitt WC, Fagerstone KA. (eds.). Managing Vertebrate Invasive Species. Proceedings of an International Symposium, USDA/APHIS WS, National Wildlife Research Center, Fort Collins, CO

Pinger RR, Rowley WA, Wong YW, Dorsey DC. 1975. *Trivittatus* virus infections in wild mammals and sentinel rabbits in central Iowa [1975]. American Journal of Tropical Medicine and Hygiene 24: 1006-1009

Romeo C, Ferrari N, Lanfranchi P, Saino N, Santicchia F, Martinoli A, Wauters LA. 2015. Biodiversity threats from outside to inside: effects of alien grey squirrel (*Sciurus carolinensis*) on helminth community of native red squirrel (*Sciurus vulgaris*). Parasitology Research 114: 2621-2628.

Romeo C, Wauters LA, Ferrari N, Lanfranchi P, Martinoli A, Pisanu B, Preatoni DG, Saino N. 2014. Macroparasite fauna of alien grey squirrels (*Sciurus carolinensis*): composition, variability and implications for native species. PLoS One 9: 1-8 (http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0088002&type=printable) Data dostepu: 2018-03-02

Roy AN, Straub MH, Stephenson N, Sholty KE, Foley J. 2017. Distribution and Diversity of *Borrelia burgdorferi* Sensu Lato Group Bacteria in Sciurids of California. Vector-Borne and Zoonotic Diseases 17: 735-742

Samuel WM, Pybus MJ, Kocan AA 2001. Parasitic Diseases of Wild Mammals. 2nd ed. Iowa State Press, 559 p.

Salsbury CM, Dolan RW, Pentzer EB. 2004. The distribution of fox squirrel (*Sciurus niger*) leaf nests within forest fragments in Central Indiana. American Midland Naturalist 151: 369-377

Salsbury CM. 2008. Distribution patterns of *Sciurus niger* (Eastern fox squirrel) leaf nests within woodlots across suburban/urban landscape. Northeastern Naturalist 15: 485-496

Stapanian MA, Smith CC. 1986. How fox squirrels influence the invasion of prairies by nut-bearing trees. Journal of Mammalogy 67: 326-332

Steele MA, Turner G, Smallwood PD, Wolff JO, Radillo J. 2001. Cache management by small mammals: experimental evidence for the significance of acorn-embryo excision. Journal of Mammalogy 82: 35-42

Steele MA, Wauters LA, Larsen KW. 2005. Selection, predation, and dispersal of seeds by tree squirrels in temperate and boreal forests: are tree squirrels keystone granivores? In: Forget PM, Lambert J, Hulme P. (eds.). Seed fate: predation, dispersal and seedling establishment, pp. 205-221. CABI, Wellingford.

Steele MA. 2008. Ecolutionary interactions bewteen tree squirrels and trees: a review and synthesis. Current Science 95: 871-876

Van Der Merwe M, Brown JS, Jackson WM. 2005. The coexistence of fox (*Sciurus niger*) and gray (*S. carolinensis*) squirrels in Chicago metropolitan area. Urban ecosystems 8: 335-347.

Weaver SC, Kang W, Shirako Y, Rumenapf T, Strauss EG, Strauss JH. 1997. Recombinational history and molecular evolution of western equine Encephalomyelitis complex alphaviruses. Journal of Virology 71: 613–623.

Wilcoxen TE, Seitz J, Nuzzo JT. 2015. Squirrel fibroma virus infection in an Eastern fox squirrel (*Sciurus niger*) from Sangamon County, Illinois. Transactions of the Illinois State Academy of Science 108: 27-28

Wood DJA, Koprowski JL, Lurz PWW. 2007. Tree squirrel introduction: a theoretical approach with population viability analysis. Journal of Mammalogy 88: 1271-1279

Wright GM, Weber JW. 1979. Range extension of the fox squirrel in Southeastern Washington and into adjacent Idaho. The Merrelet 60: 73-75

2. Databases (B)

Linzey AV, Timm R, Emmons L, Reid F. 2016. *Sciurus niger* (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T20016A115155257.

(http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T20016A22247226.en) Data dostepu: 2018-01-22

3. Unpublished data (N)

Najberek K. 2018. (in preparation). Pathogens, parasites and diseases of invasive alien species in European concern

4. Other (I)

Baiwy E, Schockert V, Branquart E. 2015. Risk analysis of the fox squirrel *Sciurus niger*, Risk analysis report of non-native organisms in Belgium. Cellule interdepartementale sur les Especes Invasives (CiEi), DG03, SPW/Editions, updated version, 34 pp.

Baldwin RA. 2016. Tree squirrels. Integrated pest management for homes, gardens, and landscapes. Pest Notes, Publication 74122, University of California (http://ipm.ucanr.edu/PMG/PESTNOTES/pn74122.html) Data dostępu: 2018-01-30

Koprowski JL, Doumas SL. 2011. *Sciurus niger* (fox squirrel). Invasive Species Compedium (https://www.cabi.org/isc/datasheet/64742) Data dostępu: 2018-01-22

Krause SK, Kelt DA, van Vuren DH. 2010. Invasion, damage, and control options for eastern fox squirrel. Proceedings of the 24th Vertebrate Pest Conference 24: 29-31

Lasy Państwowe 2016. Polskie Lasy. (http://www.lasy.gov.pl/pl/nasze-lasy/polskie-lasy) Data dostępu: 2018-01-22

Leitheiser H. 2013. Squirrel diseases and parasites: *Sciurus niger*.

(http://flower.web.runbox.net/sciuridae/Sciurus%20niger/diseases%20and%20parasites.html) Data dostępu: 2018-02-28.

Pennisi L, Vantassel SM. 2012. Selective Bird Feeding: Deterring Nuisance Wildlife from Bird Feeders. Know How. Know Now. EC 1783. University of Nebraska-Lincoln Extension.

(http://extensionpublications.unl.edu/assets/pdf/ec1783.pdf) Data dostępu: 2018-01-30

Pierce RA. 2012. Tree Squirrels: Managing Habitat and Controlling Damage. University of Missouri Extension (https://extension2.missouri.edu/g9455) Data dostępu: 2018-01-30

Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Official Journal of the European Union L 317/35. 4.11.2014

Salmon TP, Whisson DA, Marsh RE. 2006. Wildlife pest control around gardens and homes. Second editions. University of California, Oakland, USA

Steele MA, Koprowski JL. 2001. North American tree squirrels. Washington DC, USA: Smithsonian Institution UNEP-WCMC 2010. Review of *Callosciurus erythraeus* and *Sciurus niger*. UNEP-WCMC, Cambridge

5. Author's own data (A)

-