Fizyka pływa w rzece: kiedy sieć wpada w pętlę
07.07.2024
W naczyniach krwionośnych, żyłkach liści czy systemach rzecznych fizycy widzą tzw. sieci transportowe. W jakich warunkach w sieciach takich dochodzi do tworzenia pętli, które uodparniają cały system na zniszczenia? Opisał to zespół m.in. z Uniwersytetu Warszawskiego.
Okazuje się, że sieć sieci nierówna. “Struktury przypominające drzewa są skuteczne w transporcie, ale sieci zawierające pętle są bardziej odporne na uszkodzenia – mówi prof. Piotr Szymczak z Wydziału Fizyki UW, współautor pracy. – Naszym długofalowym celem jest określenie warunków niezbędnych do pojawienia się pętli w ewoluujących sieciach”.
Wyniki badań, opublikowane w "Physical Review Letters", pokazują, że sieci mają tendencję do tworzenia stabilnych struktur pętlowych przy odpowiednio dostępnym poziomie fluktuacji przepływu. Odkrycie to pozwoli lepiej zrozumieć strukturę dynamicznych sieci transportowych - czytamy w przesłanym PAP komunikacie Wydziału Fizyki UW.
Nawet pozornie podobne formacje, takie jak delty rzek, mogą mieć różną morfologię. Ujście rzeki z Wax Lake w Luizjanie w USA do Atlantyku wydaje się rozgałęziać jak drzewo, z mniejszymi odnogami rzecznymi docierającymi do oceanu. Z kolei delta Gangesu-Brahmaputry w Bangladeszu ma ujście pełne pętli i małych wysepek z licznymi kanałami łączącymi główne odnogi rzeki.
(A) Sieć kanałów pokarmowo-naczyniowych meduzy Aurelia aurita (chełbii modrej) rozprowadzająca składniki odżywcze do jej tkanek. Nowe kanały pojawiają się na zewnętrznej krawędzi meduzy, rosną w kierunku jej żołądka w środku i ponownie łączą się z istniejącymi częściami sieci, tworząc wiele pętli. (Źródło: Stanisław Żukowski, Wydział Fizyki UW & Laboratoire Matière et Systèmes Complexés, Université Paris Cité). (B) Naczynia krwionośne na siatkówce ludzkiego oka tworzą gęstą sieć, w której sąsiednie naczynia mają wiele połączeń, czego efektem są liczne pętle. (Źródło: dr. Graeme Birdsey oraz prof. Anna M. Randi, Imperial College London)
Tym, co odróżnia te dwa układy jest wielkość wahań przepływu, które są kształtowane przez wypływ wody i pływy oceaniczne, przez co mogą niekiedy zmieniać kierunek na przeciwny.
PĘTLA A DRZEWO
Pytanie o to, jakie warunki środowiskowe mogą sprzyjać tworzeniu się pętli zamiast struktur drzewiastych zainspirowało naukowców z Wydziału Fizyki Uniwersytetu Warszawskiego i Uniwersytetu Arkansas w USA do zbadania stabilności pętli w sieciach przepływowych.
Wyniki badań pokazują, że sieci mają tendencję do tworzenia stabilnych struktur pętlowych, gdy fluktuacje przepływu są odpowiednio dostrojone.
W publikacji naukowcy nazywają je "fluktuacjami Złotowłosej" (“Goldilocks fluctuations”). To nawiązanie do baśni o dziewczynce, która przyszła do domu trzech misiów i próbowała kolejno siadać na trzech krzesełkach, jeść trzy owsianki i kłaść się w trzech łóżeczkach, ale za każdym razem tylko jedno z nich było dla niej idealne. Tak samo jest z fluktuacjami: nie wystarczy, że wystąpią one w sieci transportowej, żeby zaczęły powstawać pętle. Poziom fluktuacji musi być "w sam raz".
“Sieci rzeczne mogą wyglądać niezwykle różnie w zależności od rzeki i morza: dane geoprzestrzenne dostarczają nam wizualnych dowodów na zmieniające się morfologie delt rzecznych, a dzięki pozyskiwaniu nowych danych na temat charakterystyk przepływu możemy się dowiedzieć więcej o dynamice ich ewolucji, szczególnie w czasie gwałtownych zmian klimatycznych” - dodaje prof. John Shaw z Uniwersytetu Arkansas, który spędził prawie rok na UW dzięki stypendium Fundacji Fulbrighta. Ta publikacja narodziła się z połączenia obserwacji geologicznych, równań sedymentologii i metod matematycznych fizyki.
RZEKI I SPÓŁKA
“Nasza współpraca zaczęła się od rzek, ale wnioski są dużo ogólniejsze i stosują się do niezwykle dużej klasy sieci transportowych” - mówi Radost Waszkiewicz, główny autor pracy i doktorant na Wydziale Fizyki UW.
Naukowcy odkryli, że stabilność pętli w sieciach zależy od wzajemnego oddziaływania geometrii kanałów w układzie i fluktuacji przepływu. Zauważyli, że pętle wymagają wahań względnej wielkości przepływu między węzłami sieci, a nie tylko zmian przepływu w pojedynczym węźle, oraz że pętle są bardziej stabilne, gdy wahania nie są ani zbyt małe, ani zbyt duże w stosunku do stałego składnika przepływu.
“Jeśli charakter fluktuacji ulegnie zmianie z powodu czynników zewnętrznych, takich jak interwencja człowieka lub zmiany klimatu, nowe pętle wewnątrz sieci transportowych mogą pojawić się lub zniknąć, zmieniając kształt sieci - podsumowuje prof. Maciej Lisicki z Wydziału Fizyki UW. – Mamy nadzieję, że ta obserwacja doprowadzi do bardziej precyzyjnych pomiarów w układach transportowych w przyrodzie i posunie nas o krok dalej w zrozumieniu dynamicznej przebudowy sieci transportowych.” (PAP)